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ABSTRACT

Hierarchical grids appear in various applications in computer graphics such as subdivision and
multiresolution surfaces, and terrain models. Since the different grid types perform better at different
tasks, it is desired to switch between regular grids to take advantages of these grids. Based on a 2D
domain obtained from the connectivity information of a mesh, we can define simple conversions to switch
between regular grids. In this paper, we introduce a general framework that can be used to convert a
given grid to another and we discuss the properties of these refinements such as their transformations.
This framework is hierarchical meaning that it provides conversions between meshes at different level of
refinement. To describe the use of this framework, we define new regular and near-regular refinements
with good properties such as small factors. We also describe how grid conversion enables us to use patch-
based data structures for hexagonal cells and near-regular refinements. To do so, meshes are converted
to a set of quadrilateral patches that can be stored in simple structures. Near-regular refinements are also
supported by defining two sets of neighborhood vectors that connect a vertex to its neighbors and are

useful to address connectivity queries.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Triangular, quadrilateral, and hexagonal grids appear in many
applications in computer graphics such as finite elements,
subdivision and multiresolution surfaces, and terrain rendering.
Triangular grids are common due to their application in many
fundamental algorithms such as Delaunay triangulation and Loop
subdivision [1,2], and they are also optimized for processing
on modern hardware. The simple parametric form of quadri-
lateral grids can be readily applied to tensor product surfaces,
NURBS, B-Spline, and Catmull-Clark patches [3,4]. Furthermore,
quadtrees [5] exploit the simple boundaries of quadrilateral grids
and their straightforward hierarchical shape. Hexagonal grids pro-
vide the best sampling of surfaces as they provide less bias towards
edges (they are more circular) in comparison with squares and
triangles, support uniform neighborhood, and provide a reduced
quantization error over other alternatives [6]. As a result, hexago-
nal grids appear in applications such as hierarchical representation
of the Earth and subdivision surfaces [7,8].

In this paper, we provide hierarchical grid conversions between
triangular, quadrilateral and hexagonal grids. These conversions
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are basically simple modifications in the connectivity of vertices
that convert a type of grid to another. Using these conversions, we
can switch between the grids as the need dictates (see Fig. 1). For
example, hierarchical shapes resulting from a refinement of quads
are very simple as opposed to hexagons that are not congruent
(this means that it is not possible to completely cover a hexagon
by a set of complete and disjoint smaller hexagons). As a result, we
can convert hexagonal grids to quadrilaterals to design an efficient
data structure for hexagonal grids and benefit from the simple
hierarchical shape of quads and convert them back when cells
with better sampling rate or a uniform neighborhood definition are
desired.

Hierarchy among the cells is typically provided by refinements.
Refinements introduce more cells and vertices into a model. When
a refinement is applied to a cell with area A, it divides the cell into
some smaller cells with area ?. Such a refinement is called 1-to-i
refinement or a refinement with the factor of i [9]. Refinements are
useful wheniis an integer number since after two levels of subdivi-
sion the cells are simply scaled by an integer number (although lat-
tices may not be aligned). However, these refinements are typically
specified for a particular grid. For instance, quadrilateral 1-to-3 re-
finement has not been defined while triangular 1-to-3 refinement
has been successfully employed in +/3 subdivision. Using hierar-
chical grid conversions, we propose a framework to define such
refinements and study their properties.
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Fig. 1. Semiregular hexagonal and triangular models ((a) and (b) at the bottom) are created by hexagonal and triangular refinements ((a) and (b) at the top). Using conversions
such as pairing ((c) at the top), or dual ((d) at the top), we can use simple quadrilateral hierarchical shapes and efficient data structures for packing models in (a) and (b) at

the bottom into quadrilateral patches ((c) and (d) at the bottom).
Contributions

Our main contribution is to present hierarchical conversions be-
tween regular grids. To demonstrate the usefulness of these con-
versions, we use them to define new near-regular and regular
refinements for grids and extend an existing patch-based hierar-
chical data structure - Atlas of Connectivity Maps (ACM) - [10,11]
to support hexagonal grids and more variety of regular and near-
regular refinements.

2. Related work

As we present hierarchical grid conversions in this paper and
use them to define new refinements and hierarchical data struc-
tures, we can categorize the work related to our method into three
groups: conversions between regular grids, refinement and sub-
division, and data structures proposed to support multiresolution
(hierarchy) of semiregular models. In the following, we provide
prior work of each group.

2.1. Conversion between regular grids

Grid conversion is already well explored within the Computer
Graphics community, under the topic of remeshing. Triangula-
tion [12,13] and quadrangulation [ 14] convert arbitrary meshes to
those with cells, of triangles and quadrilaterals respectively. This
remeshing may improve rendering time, mesh quality, or fulfill ge-
ometric or aesthetic constraints. Hexagonal remeshing occurs for
architectural reasons or to better represent features on the mesh
due to the better sampling property [15-18]. Alternatively, con-
versions can occur through duality remeshing to achieve a specific
cell type [8], or improve smoothness [19].

These cell conversions mostly take complicated geometric
properties (e.g. Gaussian curvature) into consideration for convert-
ing one type of grid to another as their applications need to satisfy
a specific geometric property [ 14]. However, we convert the grids
on 2D domains by simple operations that only change the connec-
tivity of vertices. Some of these conversions are very straightfor-
ward. However, we combine them with refinements to define new
refinements and design efficient hierarchical data structures.

2.2. Refinements

Regular refinements in surface modeling are the process of
splitting faces into a set of smaller faces. After refinements, more
faces and vertices are created and a higher resolution model is
obtained. As a result, refinements can create a hierarchy of objects
at different resolutions (i.e. the level of refinement). Regular
refinements have many usages in computer graphics such as
subdivision in which faces are initially split by a regular refinement
and then vertices are geometrically modified to obtain a smooth
surface.

Regular refinements are defined differently in literature.
Guskov et al. [20] consider only the dyadic refinement as a regular
quadrilateral refinement in which a face is split into four faces
(Fig. 2(b)). Weiss and De Floriani [9] also consider the same
definition for triangular faces. This type of refinement is the
most common refinement as it is employed in designing popular
subdivision methods such as Catmull-Clark and Loop [4,2] and
useful data structures such as quadtrees [5].

Velho in [21] defines regular refinements for quadrilateral
meshes as a process that produces a finer set of similar faces that
are only scaled. He then categorizes regular refinements as primal
and dual. In a primal subdivision, the vertices of the coarse tessella-
tion are preserved and old edges are divided and reconnected while
in a dual subdivision, new vertices are inserted in the interior of
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Fig. 2. (a) A set of coarse points. (b) Dyadic refinement. (c) Doo-Sabin refinement. (d) Simplest refinement.

faces and the old vertices and edges are discarded. With this defini-
tion Doo-Sabin refinement is a regular dual refinement (Fig. 2(c)).
However, there still exist some regular refinements that are not
included in this definition. Simplest refinement [22] in which new
vertices are inserted at edges and the old vertices and edges are dis-
carded is an example of a regular refinement that does not cover
by Velho’s definition (Fig. 2(d)).

Alexa [23] defines the regular refinements using 2D regular
triangular meshes. He considers a coordinate system for triangle
meshes using two edges of an equilateral triangle. To study the be-
havior of refinements, he establishes the hierarchical relationship
between the coordinate system of triangular meshes before and af-
ter refinements.

As noted by Ivrissimtzis et al. [24], the definition of Alexa for
2D triangular meshes can be rephrased as 2D triangular lattices.
If a 2D regular triangular lattice is named Ly, after an application
of a regular refinement, a higher resolution lattice L, is created,
and after r applications of a regular refinement L, is made.
Regular refinements studied by Alexa have three conditions as the
following:

e All the lattices are similar (all triangles are equilateral).

e lattice L,;1 can be obtained using a transformation in the
Euclidean plane and the scale of the transformation is called
arity of the refinement.

e Point sets of a lattice with higher resolution is the superset of
the point set of a lower resolution (i.e. Lo C Ly C Ly --- C Ly).

Ivrissimtzis et al. [24] use the same concept for categorizing
refinements for regular quadrilateral lattices. However, the third
condition in the Alexa’s definition excludes dual refinements such
as Doo-Sabin since in such a refinement the old vertices are
discarded (L, ¢ L,11). As a result, they replace the third condition
with a looser one in which they consider both center-faces, and
the vertices of L. 1, as valid locations for the points of the coarser
lattice L;.

The usefulness of these refinements is later examined through
a set of heuristics by Dodgson in [25]. Destelle et al. [26] also de-
fined a set of subdivision operators. Using these operators, some
regular and irregular refinements can be produced. However, there
exists an intermediate set of refinements that are not completely
irregular but they are not also regular. An example of such a refine-
ment is the 1-to-2 refinement employed in 4-8 subdivision which
carries good properties such as C# continuity at regular vertices.
In this paper, we introduce new regular and near-regular refine-
ments by proposing a simple framework and study some of their
properties. We hope that these refinements can later provide use-
ful smooth subdivision schemes although subdivision schemes are
not the only application of refinements. An alternative example of
the refinements’ application is Earth representation in which a hi-
erarchical model is created by combining refinement and spherical
projection [27,7,28].

2.3. Multiresolution data structures

Multiresolution surfaces have applications in mesh editing,
compression, and morphing. One approach to construct mul-
tiresolution is to use surface subdivision (or refinement) [29,30].
Various data structures support subdivision and multiresolution
surfaces [9], with the most common keeping the connectivity
information of vertices and faces into each edge [31,32]. Unfortu-
nately, these data structures require an excessive amount of mem-
ory and time to represent and maintain high resolution objects and
their hierarchy.

To support subdivision and multiresolution surfaces, hierarchi-
cal data structures such as quadtrees are more useful [5]. In or-
der to make quadtrees more efficient, indexing methods in which
a unique index is assigned to each node have been proposed. Con-
nectivity queries are then handled using a defined algebra on the
indices themselves [5,33,34]. Hierarchical indexing methods can
be efficient in terms of both space and time.

In some multiresolution frameworks, meshes have to be
semiregular or they must have subdivision connectivity [ 14,30,35].
These models are obtained by applying repetitive refinement on
a mesh with an arbitrary topology. The result of this operation
is a model composed of a set of connected regular cells. A patch
usually refers to an m x n block of quads (possibly m # n)
connected to each other. By this definition, all the internal vertices
are regular, all vertices along the boundary edges have valence
three except four vertices at the corners that have valence two.
Patches can be defined similarly for triangular and hexagonal
patches. The only difference is the valence of internal boundary
and corner vertices. For example, an internal vertex in a triangular
patch has valence six while corner vertices have valence two or
three and boundary vertices have valence four. Recently, Mahdavi-
Amiri and Samavati proposed an Atlas of Connectivity Maps
(ACM) an indexing method to support semiregular quadrilateral
and triangular multiresolution objects [36,11]. Using conversions
between regular grids, we can adapt ACM to additionally support
hexagonal models. Conversions between grids not only enable
us to adapt ACM but we can also adapt other indexing methods
defined for quadtrees or similar structures featuring different
properties to support all regular grids.

3. Conversion between regular grid systems

By changing the connectivity of cells or applying simple
operations, we can convert one type of a regular grid to another.
These conversions can be then used to define novel refinements
or extend hierarchical data structures to support cells with
complicated hierarchy definitions such as hexagons.

An important property of a regular grid is that the connectivity
of cells and vertices are implicit and there is no need to
explicitly store the connection of cells or vertices. Each cell has
a corresponding face with 3D vertices that can be obtained by
mapping ¢. ¢ can be defined via numerous sources such as B spline
surfaces, subdivision masks, or explicitly storing the location of
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Fig. 3. An eight by eight 3D patch on a mesh that is mapped to a 2D grid.

vertices. A patch is a 2D regular grid mapped onto a 3D surface
(see Fig. 3). Similar to the coordinate systems of lattices [24], we
define the coordinate systems on the regular grids (2D domains)
by taking one vertex as the origin and two incident edges to be
the coordinate axes [24,23]. This coordinate system provides an
integer indexing that can be used within a data structure to address
a 2D array storing the 3D locations of each vertex (acting as ¢).

Grid G, i € {t,q,h} denotes triangular, quadrilateral, or
hexagonal when i is t, q, or h respectively. Given a grid G;, we
can convert it to grid G; j € {t, q, h} by conversion C"~J. C'™
is an operation applied on the connectivity of a given mesh by
inserting new vertices or edges or removing the existing ones.
These conversions are defined on the 2D domain of the mesh that
are obtained by mapping vertices to a set of 2D coordinates with
integer indices. In these 2D domains, G; and G; have their own
coordinate systems (0;, U;, V;) and (0;, Uj, Vj). In these coordinate
systems, O is the origin chosen as one of the vertices on the 2D
domain and U and V are two edges chosen as the main axes of the
coordinate system. Having such coordinate systems, it is possible
to find a transformation T/ mapping (0;, U;, Vi) to (0, U;, V)
(Fig. 4). T is found through an algebraic relationship between
axes of (0;, U;, V;) and (0;, Uj, Vj). Using T, the coordinate of
any point in the coordinate system of G; can be found in G;. In
this paper, we derive some important transformation as examples.
Although choosing coordinate systems on 2D domains can be
arbitrary, the method for finding the transformation is the same
while the resulting transformations may be slightly different. In
the following sections, we introduce some conversions as well as
the notations used throughout the paper. These simple conversions
enable one to switch between regular grids to benefit from the
advantages offered by different grids.

3.1. Pairing conversion

This conversion is basically a simple pairing triangles and
denoted by C,ﬁ_’q as the subscript refers to the name of conversion
(pairing) and the superscript denotes that it converts triangular
grids to quadrilaterals. Here, we first define the notation and then
provide the conversion.

A quadrilateral grid G, consists of a set C; of quad cells with four
vertices (Fig. 5). A vertex O of G is chosen as the origin and edges
Uy and V, incident with O, form axes of G,. To distinguish between
indexing cells and vertices, we use q(a, b) as the index of a vertex
and q[a, b] as the index of a cell. A vertex v in G, has index q(a, b)
where (a, b) is the integer coordinate of v in (O4, Uy, Vy). A quad
cell has index g[a, b] if its vertices have indices q(a, b), q(a + 1, b),
g(a,b+ 1),andq(a+ 1,b + 1).

Similarly, to define a coordinate system for a triangular grid G,
(O¢, Uy, Vy) illustrated in Fig. 5(d) is used. There exist two triangular
cells associated with vertex t(a, b). Hence, we add a superscript

G, G
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Fig.4. Grid G; is converted to G, by conversion C,ﬁ_”’ and (O, U;, V;) is mapped to
(Oq, Uq, Vg) by TH1.

t

to differentiate between them: t[a, b]° and t[a, b]" illustrated in
Fig. 5. Using this notation, two triangular cells t[a, b]° and t[a, b]'
can be paired to a quad q[a, b] if the edge connecting t(a, b),
and t(a + 1, b 4+ 1) is removed (Fig. 5(d)). This conversion from
triangular cells to quads is called the pairing conversion.

When a mesh is closed, a complete pairing of triangles is
possible and is computable in O(M log* M) where M is the number
of triangles [37,38]. However, if the mesh has boundary, we may
have some isolated triangles. Based on the application, different
treatments can be applied on such triangles, we can add a dummy
vertex to quadrangulate isolated triangles, if the mesh has to be
pure quad (e.g. quadrilateral refinements) or we can keep them
as isolated triangles but distinguish them by a flag when pairing
is only needed to pack triangles for efficiency (e.g. designing an
efficient data structure).

3.2. Unpairing conversion

Unpairing conversion Cj ' is the inverse of C, % Given
quadrilateral grid Gg, connect all vertices q(a, b) toq(a+1,b+ 1)
and obtain a triangular grid G,. We can also define this conversion
by connecting vertices along q(a + 1, b) to q(a, b + 1). We refer to
the first case by referring to Cg_" unless otherwise is indicated. The
unpairing conversion can be applied on any quadrilateral mesh as
each quad can be split into two triangles. The unpairing conversion
must be compatible with the pairing conversion if we want to have
unpairing conversion as the inverse of the pairing conversion. This
means that if vertices at the diagonal in triangle pairs have indices
q(a, b) to g(a + 1, b 4+ 1) in pairing conversion, in the unpairing
conversion, the same vertices must be connected to each other.

3.3. Dual conversion

Hexagonal grids have also applications in parametrization,
Earth representation, and surface modeling. A simple way to obtain
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Fig.5. (a)A quadrilateral grid, its origin O, and two axes U, and Vj. (b) Indices of vertices of a quadrilateral cell q[0, 0]. (c) A triangular grid and its origin O. (d) Top: two axes
U, and V, with 60° difference. Bottom: U, and V, with 120° difference, and indices corresponding to these axes for cells and vertices. Green and orange cells have indices
t[0, 0]° and [0, 0]' respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. (a) Hexagonal coordinate system and its corresponding indices for hexagonal cells. (b) Coordinate system to index vertices and its corresponding indices. (c) Equality

of vectors in coordinate systems of (a) and (b).
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Fig.7. (a)Dual conversion of hexagons to triangles. (b) Duality conversion between triangles and hexagons. (c) A quad corresponding to hexagonal grids, its axes and indices

of its vertices.

hexagonal grids is taking the dual of triangular grids Cf,_’”’. To
index hexagonal cells, we use the hexagonal coordinate system
[39,40] (Fig. 6(a)). The origin Oy is chosen as the midpoint of an
arbitrary hexagonal cell h and axes Uy, and V}, have 120° difference
connecting Oy, to the midpoints of two neighboring cells.
Ahexagonal cell gets index h[a, b], if its midpointis a and b steps
from Oy along Uy, and V, respectively. Using (Oy, Uy, V}) to index
vertices does not provide our desired integer indices. Therefore,
a second coordinate system for hexagonal vertices is defined (see
Fig. 6(b)). Note that coordinate systems provided in Fig. 6(a) and (b)
can be simply converted to each other. We use subscripts A and B to
distinguish coordinates of two systems illustrated in Fig. 6(a) and
(b) respectively. As illustrated in Fig. 6(c), (1, —1)p = (1, 0), and
(1, 2)g = (0, 1)4. As a result, mapping M that transforms arbitrary
coordinates (w, A)g to (§2, A)4 can be found by solving the system
2 1

M(_11 ;) = (é (1)). Solving this system results M = (3 ).
303
To convert hexagonal grid G, to a triangular grid G, (Ch™"),

we triangulate the hexagonal cells by forming edges between
the midpoints of all adjacent hexagons (Fig. 7(a)). Similarly, to

define C,S_)”’, the midpoints of triangular cells — are taken to be
the vertices of the hexagonal cells, and edges are constructed
by connecting the midpoints of adjacent triangles. Note that the
combination of two iterations of the dual conversion is identity.
Assume that we have chosen coordinate system of Fig. 6(b) to
index the vertices. We take the average of coordinates to find the
midpoints. Fig. 7(b) shows that averaging points on the hexagon
with vertices h(1, 1), h(1, 0), h(0, 1), h(—1,0), h(—1, —1), and
h(0, —1) results in vertices on triangles (t(0, 0)) and averaging
vertices of triangles returns back the vertices of hexagons (e.g.
(HUDHOOHED — p(1, 1))). After finding G, from Gy, by the dual
conversion, one can pair the triangles and obtain a quadrilateral
grid (Fig. 7(c)).

In the dual conversion, the coordinates of cells in G, correspond
to the coordinate of vertices in G; (Fig. 8). In other words, for
any vertex t(a, b) in G;, there exists a hexagonal cell with index
hla, b] in Gp. As each triangular cell in G; corresponds to a
vertex in Gy, vertices of hexagonal cells can be indexed using the
indices of six triangular cells (Fig. 8(d)). As a result, we employ
the coordinate system in Fig. 6(a) to index hexagonal cells and



A. Mahdavi-Amiri et al. | Computer-Aided Design 79 (2016) 12-26 17

Fig. 8. (a) Indices of hexagonal cells shown by h[]. (b) Triangular grid of (a) obtained by dual conversion and the indices of its vertices shown by t(). (c) Indices of the same
triangular cells in (b) shown by t[]. (d) Indices of vertices of the hexagonal cell h[a, b] shown by h().
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Fig. 9. (a) General framework of having conversions and refinements. (b) Having a defined coordinate system for a grid, transformations are imposed by grid conversions

and refinements. R is the refinement and T is the composition of all transformations.
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Fig. 10. (a) Hexagonal grid G, and triangular grid G, obtained from dual conversion CL’;”‘. (b) 1-to-3 refinement applied on G; to obtain C[. (c) Split conversion CS'H‘. (d)

Ci~* is made using the multiresolution framework.

triangular vertices that are the dual of each other. Using the index
of triangular vertices, we can index triangular cells similar to the
case of unpairing conversion in Fig. 5(d). Finally, using the index of
triangular cells, we have indexed hexagonal cells using the duality
(Fig. 8).

We can apply dual conversion on any mesh. For example,
the dual conversion of a regular quadrilateral mesh (C} %) is a
translated regular quadrilateral mesh. We should just note that
irregular vertices on a triangular mesh would be non-hexagonal
faces in the dual mesh with sides equal to the valence of vertices.
Non-hexagonal faces also become extraordinary vertices when the
dual conversion is applied on a hexagonal mesh. Note that faces at
the boundary of a hexagonal mesh become boundary vertices in
the triangular mesh after applying dual conversion on a triangular
mesh.

4. Hierarchical grid conversion

Various refinements can be applied to an object in order to
obtain a more detailed or smoother object. To benefit from each
grid at different levels of refinement, we combine conversions
and refinements within the hierarchical grid conversion (Fig. 9).
Conversions and refinements may impose a transformation on the
grid coordinates. Therefore, a total transformation T exists for the
hierarchical grid conversion that is the composition of all involved
transformations (T = T*~? o T} o TP~°).

Using this framework, we can deﬁne useful operations and con-
cepts. For instance, we can obtain new conversions, refinements,
hierarchies, and data structures for grids. In the following, we dis-
cuss usability and applications of this framework and provide some
examples.

4.1. Split and aggregation conversion

Our hierarchical grid conversions can be a base to define new
conversions. In this section, we derive another conversion called
split conversion (Cg_’t) (Fig. 10). To define this conversion, first
Gy, is converted to G; by dual conversion Cl’;_’f and then a 1-to-

3 refinement is applied to G; to get a higher resolution grid (é[),
(see Appendix B). Note that the last conversion is identity (I) to
show that it is compatible with the multiresolution framework
(see Fig. 10(d)). The whole process converting G to Cf is split
conversion. In fact, the set of all midpoints and vertices of G is
triangulated by connecting the midpoint of each hexagonal cell to
its vertices (Fig. 11). It is possible to derive the transformation T
imposed by the hierarchical grid conversion. Here, we derive the
transformation imposed by Cf‘". ét has the same origin as G, and
can take U; and V; as the basis vectors. We can find transformation
mapping these grid coordinate systems by finding the equality of
axes of each coordinate system. In this case, U, = U; — V; and
Vi = U; + 2V, (Fig. 11(c)). Then, a hexagonal cell with index h[a, b]
has a midpoint on vertex t(c, d) in ét where (c, d) = (} fl)(g) =
(a + b, 2b — a). Other transformations could be defined similarly.

We can also define aggregation conversion denoted by Clg_’h
that reduces the resolution by replacing triangular cells sharing a
common verteXx into one cell. Vertices of h are found by adding six
vectors as shown in Fig. 12(b). Note that choosing different origins
in é[ results in different G, available in three distinct configurations
as illustrated in Fig. 12(c). One of these variations of aggregation
conversion is the inverse of the split conversion. In Fig. 12(c), if we
choose the red vertex as the origin of the aggregation conversion,
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tlc,d-11°

Fig. 11. (a) Part of a hexagonal grid Gy. (b) Triangulation of (a) by split conversion to get (’Jt. (c) Coordinate systems of G, and C, illustrated by black and red arrows
respectively. (d) A hexagonal cell is converted into six triangular cells. Indices of some triangular cells are shown. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 12. (a) G, its origin and coordinate system. (b) Vectors chosen to aggregate a hexagonal cell in G;. (c) Midpoints of hexagonal grids cover the entire vertices of G;. There
are three possibilities to choose the origin of the aggregation conversion illustrated by red, orange, and blue points. (d) Defining refinement R, for G, using refinement R,
defined for G,,. Note that this definition follows the general multiresolution framework that has been introduced earlier. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 13. (a) Gy, (b) Refined G, by 1-to-3 refinement. (c), (d), and (e) Three types of éq (quadrilateral 1-to-3 refinements) can be made. Note that e is a near-regular refinement.

(f) Top/Bottom: Cell refinements for (c)/ (d), (e).

we can define the inverse of split conversion. Choosing other
vertices as the origin has also application in finding new hexagonal
refinements that we describe later in the paper.

We can apply split and aggregation conversion on any mesh.
Irregular vertices in a triangular mesh would be non-hexagonal
faces in the aggregated mesh with sides equal to the valence of
vertices. Non-hexagonal faces also become extraordinary vertices
when the split conversion is applied on a hexagonal mesh.

4.2. New refinements

Refinements are generally defined for a specific type of grid.
However, using hierarchical grid conversion, we can define new
refinements for grid G, using the existing refinement for grid G,.
This happens when G, is converted to G, by C,.‘Hb, Gy is refined

and éa obtained by conversion Cjb_’“. The whole process to convert

G, to éa is a refinement R, defined for G, (see Fig. 12(d)). Note
that transformation R, is the combination of all transformations
C*P Ry, and Cj”_’“. In the following, we discuss how to obtain
refinements for grids using known regular refinements for a
specific type of grid.

4.2.1. Quadrilateral refinements

A variety of refinements have been proposed for quadrilateral
grids. 1-to-4 refinement applied in Catmull-Clark subdivision is
the most common one. However, 1-to-2 refinement used in V2
subdivision (see Appendix A) as well as 1-to-5 refinement has also
been proposed for quadrilateral grids (see Appendix C) [41,42]. It
is possible to extend the variety of quadrilateral refinements using

defined refinements of other grids. For example, using refinements
defined for triangular grids, we show how to obtain a greater
variety of quadrilateral refinements.

To define quadrilateral refinements using triangular refine-
ments, we use the sequence of conversions and refinements illus-
trated in Fig. 12. For instance, if we apply Cg_’t and use triangular

1-to-3 refinement on G; and then apply C,ﬂﬂq, the whole process
is a quadrilateral 1-to-3 refinement as illustrated in Fig. 13. Note
that depending on C,ﬁ_"’ three types of 1-to-3 refinements can be
defined for quads as illustrated in Fig. 13. The result of this pro-
cess may not produce a regular refinement as quadrilateral cells
may have valence three or six instead of four (see Fig. 13(e)). How-
ever, there exists a strong regularity among the cells since all the
cells have the same shape and area and the area of cells is com-
pressed with the same proportion of regular refinements. Note that
the area of rhombic cells is equal to %‘ where A is the area of a
regular quadrilateral cell. As some properties of such refinements
are the same as regular refinements, we call them near-regular re-
finements. These refinements have been also called semiregular in
the literature [21]. However, to avoid confusion between semireg-
ular models that are composed of regular patches and semiregu-
lar refinements that resemble some of the properties of regular
refinement, we use the term near-regular for these refinements
throughout the paper.

Quadrilateral cells can be transformed to rhombic cells using a
2 1
3

simple matrix transformation R. Matrix R = (3

3) is obtained
3 3

for quadrilateral 1-to-3 refinement. Note that rows of matrix R
are the coordinates of new inserted points after the refinement.

The refinement illustrated in Fig. 13(e) produces vertices with
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Fig. 14. 1-to-7 refinement for triangular and quadrilateral grids.

valence three or six, so we call it 3-6 refinement. It is possible to
define other quadrilateral refinements based on the hierarchical
grid conversion. Similarly, we can define a 1-to-7 quadrilateral
refinement (see Appendix D) if we replace 1-to-3 triangular
refinement by 1-to-7 triangular refinement in the conversion
(Fig. 14).

4.2.2. Triangular refinements

Although triangular refinements are very well studied, we can
define new refinements for triangular grids using quadrilateral
refinements. Two instances of quadrilateral refinements are 1-to-
2 and 1-to-5 refinements defined for quads (see Appendices A and
(). To apply quadrilateral refinement R, on a triangular grid G;, we

use pairing conversion C}ﬁﬁq to obtain Gy, and then apply R, on G,
to obtain Cq. We can then apply the unpair conversion Cg_" to get
ét which is the refined version of G;. Figs. 15 and 16 illustrate this

process when R is 1-to-2 or 1-to-5. Note that two types of é[ can
be obtained: 4-8 refinement and triangular 1-to-2 refinement.

4.2.3. Hexagonal refinement

Hexagonal refinements are often used in subdivision surfaces or
image processing [8,40]. Using existing triangular refinements and
our conversion technique, the number of hexagonal refinements
can be expanded. Given a hexagonal grid Gy, we convert Gy, to G;
using split conversion (Csh_”). We then apply triangular refinement

on G; (see Fig. 17) and make a new hexagonal grid éh using one
of the aggregation conversions (Cfﬁh). It is possible to define
hexagonal refinements using a variety of triangular refinements.
Fig. 18 illustrates hexagonal 1-to-4, and 1-to-7 refinements. We
have three possible aggregation conversions and each produces a
different refinement.

Our framework is general enough to introduce more variety
of refinements by changing conversions and refinements. Here,
we have provided a set of examples to describe the framework.
Another instance of these refinements is produced when we use
duality conversion and 1-to-2 refinement on the triangular grid, we

can define a 1-to-2 refinement for hexagons as illustrated in Fig. 19.
In this paper, in addition to introducing a general framework to
define refinements for grids, we achieved refinements that are
novel to our knowledge. Examples of these novel refinements are
primal 1-to-7, and 1-to-2 hexagonal refinements, 1-to-3 and 1-to-
7 quadrilateral refinements as well as 1-to-2 and 1-to-5 triangular
refinements.

Although some of the refinements that are proposed seem
skewed after one iteration of the refinement, it is possible to cancel
out these effects after an additional application of refinements.
This way, a perfect regular grid is obtained. For instance, Fig. 20
illustrates how a perfect grid is obtained after two iterations of the
refinement in Fig. 13.

5. Indexing semiregular models

A semiregular model is created by applying refinements on a
mesh with arbitrary connectivity. It is desired to have an efficient
data structure for these meshes. In [10,11], a data structure
called Atlas of Connectivity Maps (ACM) has been proposed for
triangular and quadrilateral semiregular models. In this section, we
discuss how to use hierarchical grid conversions to extend ACM
to hexagons and also some new refinements that have not been
discussed in [10,11]. Note that ACM is an example of a hierarchical
data structure defined on a particular grid (quads) and it can be
extended to other cells thanks to the hierarchical grid conversions
proposed in this paper. We can use the same concept to extend
other hierarchical data structures such as quadtrees to support
other types of cells and refinements.

5.1. Review of ACM

A semiregular model consists of a number of regular patches
connected to each other. In ACM, the connectivity of each patch
can be captured by a simple 2D grid with a 2D indexing method
and then the geometry of vertices can be recorded in a 2D array.
The indexing is based on a simple coordinate system assigned to
each 2D grid.

Connections within each patch are implicit and therefore
connectivity queries between internal vertices of each patch are
addressed by simple neighborhood vectors that connect a vertex
or cell to its neighboring vertices or cells. A transformation is
used to traverse from one patch to another (Fig. 21). These
simple 2D patches and their interconnections are maintained
through the resolutions (for all types of refinements) by applying

RGN

Fig. 16. (a) The location of inserted vertices. (b) New vertices on a coarse grid. (c) New edges are drawn. (d) Triangular 1-to-5 refinement.
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Fig. 17. (a) Hexagonal grid Gy. (b) Split conversion is applied on Gy, and G, is obtained. (c) 1-to-3 on G; results in triangular grid G,. (d) There are three possible origins for
the hexagons. (e) Choosing different origins results three distinct hexagonal refinement, one dual and two primal.
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Fig. 18. Dual and primal 1-to-4 hexagonal refinements (a), 1-to-7 hexagonal refinements with 19° (b) and —19° (c) rotations.
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Fig. 19. (a) Gy and its dual G;. (b) Gy and its dual G, refined by 1-to-2 refinement. (c) G, and Gpon top of each other. (d) Cell 1-to-2 hexagonal refinement. Red vertices are
newly inserted, white vertices are removed, and green vertices are preserved after a refinement. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

a

d

Fig. 20. (a) A quadrilateral grid. (b) 1-to-3 refinement on the quadrilateral grid in (a). (c) An additional application of 1-to-3 refinement on the grid in (b). (d) The result of
two applications of 1-to-3 refinement on a quadrilateral grid is a regular quadrilateral grid.

a transformation (imposed by the refinement) to the coordinate
system of each 2D patches. To capture this information, ACM has
a set of elements illustrated in Fig. 21(c). Using pairing conversion
C,ﬁﬂq, ACM can be also used for triangular refinements.
Connectivity information of a mesh is captured in a list of con-
nectivity maps called CM_List. Each entry of CM_List (CM_List[i])
corresponds to a patch (CM;) in the mesh. A global integer called
resolution is also stored for the entire mesh that refers to the res-
olution or the level of refinement of the mesh. If we want to sup-
port adaptive subdivision with patches at different resolutions, we
can separately store the resolution of each patch [43]. The reso-
lution of the mesh helps to determine the range of vertex indices

in CM;. For example, in 1-to-4 refinement, (a, b), are in the range
0<ab<?2.

Each connectivity map CM; has structures to store the 3D loca-
tions of its vertices and connectivity information of its neighboring
patches. CM; has a 2D location array of 3D points (x, y, z) called ver-
tices storing locations of its vertices. To access neighbors, each CM;
has also an integer array called neighbors that keeps the indices of
the neighbors of CM; in CM_List. For each neighbor (CMj,), a T,
is also stored in an array called transformation. To have an easier
representation for transformations, we encode possible T, by in-
tegers. These transformations are used to traverse from one patch
to its neighboring patches.
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array [][] vertices;

j neighbors [4];
transformations[4];

array [4] corner_neighbors;

i 1¥T/

Fig. 21. (a) A connectivity map. Vertices are connected to their neighbors by neighborhood vectors. (b) Transformation T is used to traverse from one connectivity map to
its neighbors. (c) Elements of a connectivity map. In ACM, we have a list of connectivity maps (CM) for the entire model.

c M
{
array [I[1[] vertices;
neighbors [4];
transformations[4];
array [4] corner_neighbors;
}

Fig. 22. (a) Vertices of a quadrilateral and hexagonal patch are drawn in green and red respectively. Vertex q(i, j) (drawn in blue) is the bottom-left corner of cell g[i, j]. Cell
qli, j] is split into two triangles t[i, j1°, and t[i, j]* illustrated in gray and orange respectively (b) Vertices of a hexagon and their associated triangular cells. (c) Modified ACM
for vertices of hexagonal cells. We use a 3D array instead of 2D arrays for storing vertices. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Irregular vertices in semiregular meshes are only found at the
corners of the connectivity maps. These vertices are shared by
multiple connectivity maps. Therefore, to access the neighbors of
a corner, we store patches that share the same corner.

The reason for having an advantage over other common data
structures for storing the connectivity of a mesh such as half-edges
is that in ACM the connectivity information of vertices, faces, and
edges are not stored throughout the resolutions [10,11]. The only
stored information of the mesh is the connectivity of the first res-
olution which is constant throughout the resolutions. In addition,
handling the neighborhood finding operation using simple alge-
braic operations such as neighborhood vectors enhances the per-
formance of ACM in applications with extensive dependency to the
connectivity information of vertices such as subdivision.

5.2. ACM for hexagons

As ACM is an efficient data structure for semiregular models, it is
desired to use it for hexagonal cells, despite its original formulation
in terms of triangles and quads. Hierarchical grid conversions
provided in this paper can help to extend ACM for supporting
hexagons. To apply ACM to hexagons, we use dual conversion CS‘"
and obtain a triangular patch with n x n vertices from an n x n patch
of hexagonal cells (Fig. 22(a)). This way, for each triangular cell, a
unique vertex of hexagonal cells exists (Fig. 22(b)). A quadrilateral
patch with n x n vertices can be represented by a 2D array in which
the (i, j) entry of the array refers to the bottom-left vertex of cell
qli, j] (see Fig. 22(a)). As discussed earlier, each quad q[i, j] may
be split into triangular cells t[i, j]° and t[i, j]'. Each triangular cell
t[i, j1* (k = 0 or 1) corresponds to a vertex in a hexagonal grid. As
aresult, vertices of a hexagonal grid are represented in a 3D array
in which entry (i, j, k) refers to triangular cell t[i, j]* obtained from
dual conversion of the hexagonal grid.

We can modify the location array of vertices in ACM to a 3D
array to support hexagonal grids (see Fig. 22(c)). Transformation

between connectivity maps and handling the neighborhood
queries are similar to the case of triangular cells. Fig. 23 illustrates a
hexagonal mesh at two successive resolutions and its connectivity
maps. By extending ACM to support hexagonal grids, we can
benefit from the advantages of ACM, such as speed in handling
connectivity queries and the efficient support of hierarchical
queries between the vertices and cells.

5.3. ACM refinement extension

In [10,11], only regular refinements (with specific rotation)
have been discussed. By providing more possible refinements
through hierarchical grid conversions, the question is how to
extend ACM to support these refinements. Here, we discuss how
ACM can be modified to support more variety of refinements. In
the following, we discuss two categories of refinements that have
not been explored in [10,11].

1-to-5 and 1-to-7: In [10], refinements are categorized based
on their imposed transformation to the grid of subsequent resolu-
tions. Based on these categorizations, both 1-to-5 and 1-to-7 re-
finements belong to the category - scaling, rotation, no translation
- that means these refinements impose only scaling and rotation to
the subsequent grids. In ACM, rotation of refinements is eliminated
in order to benefit from the connectivity information of the first
resolution. In [10], 1-to-2 refinement is presented as an instance
of this category by scaling the connectivity map by two. This way,
at odd resolutions, some empty indices exist that are filled by new
vertices at the next even resolution. In fact, after two resolutions,
the connectivity maps are simply scaled by two without any rota-
tion involved. This works due to the cancellation of the 45° rotation
of 1-to-2 refinement after two resolutions.

1-to-5 and 1-to-7 refinements are not aligned after two
resolutions since the rotations are not canceled out. However, two
versions of these refinements exist with 6 and —6 rotations (see
Fig. 24). To have aligned connectivity maps for these refinements,
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Fig. 24. (a), (b) 1-to-7 refinement with +19° and —19° rotations. (c) After one level of refinement in (a) followed by the refinement in (b), the rotation is discarded. (d), (e)
1-to-7 refinement with +25° and —25° rotations. (f) Rotation is canceled out.
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Fig. 26. (a) A triangulated cube. (b) Applying +/3 subdivision on (a). (c) Applying unpair conversion on (b) results a quadrilateral mesh refined by 1-to-3 and smoothed by
/3 subdivision. (d) Applying the same process (unpair conversion and smoothing) on (c). (e) The cube in (a) after applying 1-to-3 refinement and +/3 smoothing masks.

Fig. 27. (a) A quadrilateral mesh. (b) Triangulating the mesh using pairing conversion. (c) 4-8 subdivision using ACM on the triangulated mesh.

we can apply one level of refinement with 6 followed by one
level of refinement with (—6) rotation. This way, rotations are
canceled out, and we get a refinement with the same factor but
without a rotation (see Fig. 24). Note that neighborhood vectors
that connect a vertex to its neighbors are different for even and odd
resolutions in refinements that impose rotations. Fig. 25(a) and (b)
show neighborhood vectors for 1-to-5 and 1-to-7 refinements.

4-8 and 3-6: 4-8 and 3-6 near-regular refinements have
two types of neighborhood vectors based on the type of vertex.
Fig. 25(c) and (d)illustrate neighborhood vectors for vertices of 4-8
or 3-6 refinement. Connectivity maps are scaled by two and three
every other resolution for 4-8 and 3-6 refinements respectively
(see Fig. 27).

6. Discussion and results

Using the hierarchical grid conversions, we can define new re-
finements that may be applied on regular grids. By alternating be-
tween conversions and refinements, we can also apply subdivision
methods that are defined for specific results. For example, we can
apply 1-to-3 refinement on quadrilateral grids with the smooth fil-
ters defined for the +/3 subdivision method for triangular grids (see
Fig. 26). We also extend ACM to support hexagonal meshes (see
Fig. 23) as well as more variety of refinements such as, 1-to-7, 1-
to-5, and 4-8 subdivision (Fig. 27). As a result, ACM, which effi-

ciently handles connectivity and hierarchical queries on semireg-
ular models, can be applied to a greater variety of refinements and
grid types. Note that the smoothness of these subdivision tech-
niques is the same as the original underlying subdivision (e.g. v/3
for Fig. 26 and 4-8 subdivision for Fig. 27) as the conversions do
not change the geometry and they just change the connectivity of
vertices. Extraordinary vertices of the mesh are also limited to the
number of extraordinary vertices at the first resolution after con-
versions and they have the same as smoothness of extraordinary
vertices in the underlying subdivision. Our proposed conversions
can also be used to efficiently switch between grids as needed by
the application. For example, the hexagonal meshes that are com-
mon in Earth representations [44-46] can be converted to a trian-
gular mesh for efficient rendering (see Fig. 28).

Although the focus of the paper is to study conversions for
regular grids or semiregular meshes that are composed of attached
bounded grids, it is interesting to see what are the outputs of each
conversion in case of different input meshes. In general, if the input
of a conversion is not a regular mesh, the result of the conversion is
not usually a regular mesh. Note that defining a coordinate system
for an irregular mesh and therefore establishing transformations
are not as straightforward as regular grids. However, if the mesh
is pure quad or triangle mesh, we can still apply refinements
and use ACM to support its connectivity and hierarchical queries.
Table 1 shows the output of each conversion having different
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Fig. 28. Left: A hexagonal globe with 1-to-3 refinement at three successive resolutions. Right: Triangulation of left using dual conversion using ACM.

Table 1

Inputs and output of the discussed conversions. Note that irregular mesh is a mesh whose face can have arbitrary
number of sides. im in the superscript of conversions refers to irregular meshes. Irregular quad and irregular triangle
also respectively indicate meshes with only quads or triangles whose vertices can be of arbitrary valence.

Conversion Input Output

C,f)q Regular triangle Regular quad
Cf,_>q Irregular triangle (spherical topology) Irregular quad

C ,§7>q Irregular triangle (non-spherical topology) Quad and triangle
it Regular quad Regular triangle
Cf,_>[ Irregular quad Irregular triangle
it Quad and triangle Irregular triangle
Cl‘)’>“ Regular triangle Regular hexagon
CB’“ Regular hexagon Regular triangle
(o Regular quad Regular quad
Cim—>im Irregular mesh Irregular mesh
Csh’” Regular hexagon Regular triangle
C57‘_>t Irregular hexagon Irregular triangle
Cf(“f Regular triangle Regular hexagon
com Irregular triangle Irregular mesh

inputs. For example, when a triangular mesh has a boundary, it
may not be impossible to obtain a pure quad mesh with no isolated
triangle at the boundaries as the mesh may have odd number of
triangles or the connectivity of triangles does not allow a pure
quadrangulation. By following this table, we can also find the
output of a combination of conversions. For example, if we have
an input irregular hexagonal mesh M; and apply split conversion,
CS”‘_”, to it, we obtain an irregular triangular mesh M;. Now, we
can apply pairing conversion, C,ﬂﬁq, to M;. Based on whether M;
(equivalently My) has a spherical topology, we can obtain pure
irregular quadrilateral mesh or a mix of triangles and quads.

7. Conclusion and future work

In this paper, we present hierarchical grid conversions and use
it to systematically define refinements. We extend an existing
patch-based hierarchical data structure called ACM for handling
connectivity queries of semiregular models, to support hexagonal
semiregular models and some additional refinements. From this
enhanced support and newly defined conversions, we can best
apply a given grid-type to the application-specific challenge.

Based on the conversions between regular grids, we can extend
ACM to support hexagonal semiregular models as well as a wider
range of refinements such as 4-8 and 1-to-7 refinements. We
have proposed new types of refinements that may be used to
generate smooth subdivision schemes. Finding smoothing masks
of these new refinements and their multiresolution filters can be a
future work. ACM is designed for semiregular models and models
obtained from adaptively subdividing patches. Extending ACM to
support meshes that have a combination of regular patches and
irregular connectivity is also a future work. One possibility is to

combine ACM with a known data structure such as half-edges that
can perform well for irregular patches of the mesh.
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Appendix A. 1-to-2 refinement

1-to-2 refinement used in quadrilateral +/2 subdivision is
composed of two stages of splitting and edge-flip. In the splitting
stage, a cell is split by inserting the midpoint of quadrilateral cells.
These vertices are then connected to the old vertices and old edges
are flipped (see Fig. A.29).

Appendix B. 1-to-3 refinement

1-to-3 refinement is used in /3 subdivision [47]. In this
refinement, a vertex is inserted in the midpoint of each cell.
These newly inserted vertices are connected to the old vertices
by inserting new edges and old edges are flipped (see Fig. B.30).
Fig. B.30 illustrates the steps of 1-to-3 refinement.

Appendix C. 1-to-5 refinement

1-to-5 refinement has been introduced for quadrilateral grids.
. - - 2 1\ (4 2\ (T 3
In this refinement, four vertices at locations (£, 1), (%, £), (3. 2).
and (g, g) are inserted. The connectivity of vertices is changed
afterwards as illustrated in Fig. C.31.
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Fig. B.30. (a) A triangular grid. (b) Midpoints of each triangular cell are inserted. (c) Old vertices are drawn in red. (d) New vertices are connected to old vertices. (e) Old
edges are flipped. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. C.31. (a) The location of inserted vertices. (b) New vertices on a coarse grid. (c) New edges are drawn. (d) Old edges are removed.
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Fig. D.32. (a) Masks of 1-to-7 refinement. (b) New vertices are inserted. (c) Old edges are removed and new and old vertices are connected. (d) Orange coarse triangular

grid is refined by 1-to-7 refinement.

Appendix D. 1-to-7 refinement

1-to-7 triangular refinement has been studied in +/7 subdivi-
sion [42]. In this refinement, three vertices are inserted in a tri-
angular cell, old edges are removed and new edges are formed.
Consider a diamond with unit length edges. In triangle t[0, 01°,
three vertices with coordinates (1, 2), (%, 2), and (2, %) are in-
serted and in t[0, 0]', coordinates of three new vertices are (%, %)
(2.2),and (%, 3). Fig. D.32 illustrates the mask of 1-to-7 refine-
ment and its topological changes.
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