دانلود رایگان مقاله انگلیسی تعبیر معانی در اتوماسیون مدیریت منابع انسانی از طریق SQL - اشپرینگر 2017

عنوان فارسی
تعبیر معانی در اتوماسیون مدیریت منابع انسانی از طریق SQL
عنوان انگلیسی
Embedding semantics in human resources management automation via SQL
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
31
سال انتشار
2017
نشریه
اشپرینگر - Springer
فرمت مقاله انگلیسی
PDF
کد محصول
E8741
رشته های مرتبط با این مقاله
مدیریت
گرایش های مرتبط با این مقاله
مدیریت منابع انسانی، مدیریت دانش
مجله
هوش کاربردی - Applied Intelligence
دانشگاه
DEI - Politecnico di Bari - Via Orabona - Bari - Italy
کلمات کلیدی
مدیریت مهارت، تدوین دانش، منطق توصیف، RDBMS ،SQL
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Among enterprise business processes, those related to HR management are characterized by conflicting issues: on one hand, the peculiarities of intellectual capital ask for rather expressive representation languages to convey as many facets as possible; on the other hand, such processes deal with huge amounts of resources to be managed. For handling HR management tasks, our approach combines the representation power of a logical language with the information processing efficiency of a DBMS. It has been implemented in a fully functioning platform, I.M.P.A.K.T., that we present here highlighting its peculiarities for three relevant business processes: skill matching, task/team composition and company core competence identification.

نتیجه گیری

6 Conclusions


Motivated by the need of efficiently managing large quantities of information in a human resources management system while still benefiting from novel non-standard reasoning services typical of knowledge representation and reasoning, we introduced a knowledge compilation approach in an originally designed relational schema, and devised solutions to execute inference services—both standard and non-standard ones—through standard-SQL queries only. We exploited such services referring to three relevant business processes typical of recruitment and human resources management, presenting them in the framework of the I.M.P.A.K.T. system. We reported an effective comparison with existing tools and research solutions and showed the effectiveness of our approach also from a computational point of view. Implementation of optimization techniques, such as table partitioning in our PostgreSQL database, are under development. As expected, first results show an improvement in the I.M.P.A.K.T. performance (e.g., for the skill matching execution over a dataset of 10000 profiles, we obtain a reduction of 30 percent on the retrieval time). Moreover, we are currently studying the peculiarities of the proposed design method for database modeling and management, with the aim of generalizing it to a framework fully independent from the underlying ontology.


Future work aims at testing further devised strategies for score calculation and at designing a service for CV translation from plain text according to our skill ontology. Moreover, in order to deal with specific business application requirements, e.g., the need to deploy I.M.P.A.K.T. in a more scalable environment, we are investigating the possibility of exploiting Big Data technologies for KB modeling and querying.


بدون دیدگاه