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Abstract Among enterprise business processes, those
related to HR management are characterized by conflicting
issues: on one hand, the peculiarities of intellectual capital
ask for rather expressive representation languages to convey
as many facets as possible; on the other hand, such processes
deal with huge amounts of resources to be managed. For
handling HR management tasks, our approach combines the
representation power of a logical language with the infor-
mation processing efficiency of a DBMS. It has been imple-
mented in a fully functioning platform, I.M.P.A.K.T.,
that we present here highlighting its peculiarities for three
relevant business processes: skill matching, task/team com-
position and company core competence identification.
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1 Introduction

The so-called network economy changed the way of con-
ceiving knowledge management in organizations. Enter-
prise borders go far beyond its physical location and more
and more knowledge-intensive resources become avail-
able across the network. Such a shared environment asks
for unambiguous interpretation of information sources and
makes knowledge-based technologies a key success fac-
tor. In particular, business processes automation can take
a crucial chance by technologies supporting knowledge
representation and management [20].

Among other business activities, human resources man-
agement can get a significant boost from the adoption of
knowledge-based technologies aimed at business automa-
tion. In fact, intellectual capital is an asset with peculiarities:
it is intangible, its description is subjective, and the way
to describe such an asset is a key choice for its successful
exploitation. Logic-based representation perfectly fits such
peculiarities, and the representation language—if prop-
erly chosen—could support human resources management
automation through suitable reasoning services.

Even though such flexibility and informative potential is
paid in terms of computational cost of reasoning, semantic-
based enterprise systems may represent a good candidate
to substitute traditionally employed solutions, mostly based
on Relational Data Base Management Systems (RDBMSs).
Despite recent emerging systems in the data storage field,
such as NOSQL1 technologies, we focus on RDBMS, as
structured data model engine, and SQL, as declarative lan-
guage for data manipulation and retrieval, since they still
represent the most popular and well-known tools in enter-
prise scenario. Nevertheless, RDBMSs lack of a semantic

1e.g., http://nosql-database.org/.
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characterization of resource descriptions thus allow only
for syntax-based information management, which is too
restrictive for a domain as knowledge-intensive as human
resources. Our main goal in this paper is aiming at filling
such a gap.

For example, available e-recruitment tools2 generally
store information about employment, personal data, cer-
tifications and competence of candidates by exploiting
RDBMSs with customized and structured templates. Then,
some information is extracted through relational query
languages—SQL or some variants. Now, an RDBMS is
surely suitable for efficient storage and retrieval of data,
yet SQL is usually not flexible enough to support a discov-
ery process as complex as recruitment. Take, for instance,
the problem of selecting the most appropriate candidate for
some job; this is a process involving several preferences,
some along orthogonal dimensions—e.g., acquired skills
vs. geographical location—while others somehow related—
e.g., learning gaps and expected salary. By means of SQL
standard operators such as aggregate functions, group by
and order by clauses, the user is able to retrieve the
best tuples (i.e. the best candidates for a specific task)
according to her sorting criteria; yet such tuples still need
a human-based post-processing phase, where incompati-
ble or unsatisfied preferences (not directly representable by
standard SQL) are evaluated and traded off.

More generally, classical DB-based techniques show
their limits in managing complex domains: (i) search pro-
cesses can be very time-consuming but often unsatisfac-
tory because underlying frameworks basically rely only on
keyword-based approaches; (ii) a user can express only
mandatory requirements (it is not possible to select features
according to some negotiable constraints). On one hand,
such systems usually do not return arranged outcomes (a
priori excluding results summarily deemed as not relevant)
and, above all, they do not provide any results explanation.
On the other hand, heavy computational capabilities prevent
a widespread usage of semantic approaches, and as soon
as real data sets have to be faced in common applications,
response times become often unacceptable.

We propose to reconcile such a dichotomy by combining
the richness in informative content, typical of semantic-
based approaches, with efficient data management and
scalability, characterizing RDBMS-based ones. To draw an
analogy with Programming Languages, our approach allows
a user to express information in a high-level knowledge
representation language, and then it “compiles” and stores
it away as tuples in a Relational Data Base (RDB). Then,
when the user expresses queries regarding such data—still
in the high-level representation language—they are com-
piled to SQL queries that match the previous tuples. In

2e.g., http://www.monster.com/, http://www.careerbuilder.com.

this way, our system retains both the expressiveness of a
knowledge representation language and the efficiency of an
RDBMS.

Our approach follows the so-called Knowledge Com-
pilation scheme [9]. Knowledge Compilation has been
employed to make computationally easier to reason over
the information contained in a Knowledge Base (KB), by
splitting the reasoning process in two phases: (i) the KB
is pre-processed, thus parsing it in a proper data structure
(off-line reasoning); (ii) the query is answered exploiting
the structure coming out of the first phase (on-line reason-
ing). To this purpose, the proposed skill engine leverages
KB pre-processing to reduce on-line reasoning overhead.

The main contributions of this article may be summarized
as follows:

– we present a novel skill management approach, which
adopts a Knowledge Compilation scheme over a KB
formalized in Description Logics (DLs) [1], that makes
the proposed approach different from our previous
work [16]. At the same time, it preserves computa-
tional efficiency, which is quite low in fully logic-based
approaches.

– we presentI.M.P.A.K.T. (Information Management
and Processing with the Aid of Knowledge-based
Technologies),3 as an innovative system implementing
the approach above. I.M.P.A.K.T. is an integrated
system for human resources management by support-
ing the execution of three relevant business processes:
i) retrieval of ranked referral lists, ii) working team
composition, iii) automated extraction of strategical
enterprise competence.4 The performance of such busi-
ness processes exploits an inference engine solving
non-standard reasoning services, by means of a flexi-
ble query strategy in standard SQL. This strategy results
from the design of the on-line reasoning component of
our Knowledge Compilation approach.

For a matter of readability, we here report only on the
modeling approach allowing to translate the KB into the
reference relational database. We do not delve into details
about the design of SQL queries solving the reasoning
services at the basis of provided HRM services, only report-
ing on the design of the off-line reasoning phase of the
Knowledge Compilation approach.

The rest of the paper is organized as follows. The next
section reports on relevant professional tools and research
proposals related to our work. Section 3 introduces the

3An embryonic I.M.P.A.K.T. version, including only retrieval of
ranked referral lists of candidates, has been presented in [53].
4A short introduction of the three services in I.M.P.A.K.T. has
been given in some previous works [17, 54, 55].
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off-line reasoning component of the proposed knowledge
compilation approach (the reader not familiar with Descrip-
tion Logics may need to read through Appendix A before).
In Section 4 we first show efficacy of the proposed non-
standard reasoning services through a comprehensive exam-
ple and then present a numerical experimental evaluation of
the system. Conclusions close the paper.

2 Related work

In order to motivate the proposal of I.M.P.A.K.T., we
compare it with relevant related work. In particular, to show
how I.M.P.A.K.T. combines advantages of both DB-
based and logic-based approaches to automated recruitment,
we report on related work pertaining to both categories,
proposed in professional and academic products.

2.1 Professional solutions for recruitment

Most professional tools for talent management5 and
e-recruitment are enterprise suites supporting human
resources management, including solutions that, even
though improving the recruitment process by means of
innovative media and tools, do not introduce a significant
novelty charge. Available solutions in fact exploit databases
to store candidate personal and employment information,
and perform recruitment on the basis of exact match, in
absence of a logic-based structure.

On the contrary, the inadequacy of exact match of
resumes in job search has been recognized several times
over the last years, and motivates the proposal of some
professional solutions.

To the best of our knowledge, one of the first logic-based
tools for recruitment and referral process is RESUMIX,6

which has been employed at US Army and Navy Depart-
ment till 2012, and is still at the basis of NASA recruitment
process. As far as we can see, due to the privacy restric-
tions required by its employment in military institutions,
RESUMIX is a staffing tool using techniques mining the
context of words to overcome limits of keyword-based
search. It is semi-automated (the last resume review is left
to humans) and asks applicants for writing resumes accord-
ing to a specific format (guided by a web interface), and
apply for open positions. RESUMIX distinguishes skills
in required and desired ones in the description of open

5http://www.attract-hr.com/cm/about, https://www.oracle.com/it/appli-
cations/human-capital-management/talent-management/acquisition/index.
html.
6http://nasajobs.nasa.gov/NASAStars/about NASA STARS/
what is resumix.htm.

positions: only required skills must be matched by the
retrieved candidate, while desired ones are only used to
rank candidates. No explanation is returned for the proposed
solutions.

Sovren7 offers different valuable solutions to semantic-
based matching of profiles. Notably, the Sovren Resume
Parser deals with the problem of converting resumes from
several text formats to the standard HR-XML schema8. This
fully distinguishes Sovren from other providers, which ask
candidates to model CVs in a specific format. The fully-
automated tool Sovren Semantic Matching Engine (SSME)
is able to match resumes (in HR-XML) to job offers prop-
erly formatted thanks to the Sovren Job Order Parser
embedded in SSME (the parser translates also job offers
in plain text). SSME allows for weighting search criteria
(the granularity level of the weighting mechanism is not
provided) and returns a ranked list of candidates, which
seems to exclude false-positives (it is not clear if the process
produces false-negatives, because the matching strategy is
not revealed in full details). The full automation makes the
matching process completely hidden to the recruiter, who
does not receive any explanation about retrieved results.
SSME provides also a service for finding candidates (jobs)
who are similar to other candidates (jobs, respectively),
called candidate (job) clone.

Around 2013, Monster.com(R), the leading Web job-
matching engine, introduced the service Monster Power
Resume Search(T M)9 to improve the relevance of candidates
recruitment over Monster database. The product relies on
the semantic 6Sense(T M) search technology, patented by
Monster Worldwide, Inc. itself. Thanks to such a search
technology, the novel engine is able to mine the content
and the context of each term in the request. A guided inter-
face supports recruiters in specifying all the features of the
request, together with the related levels and years of experi-
ence. Monster Power Resume Search(T M) retrieves a ranked
list of candidates, whose top skills are shown in the results
interface and easy to compare. The service apparently lacks
a mechanism for weighting job requirements and of an
explanation of ranked results.

Talemetry(R) Source & CRM offers an easily search-
able interface over a single database combining internal and
external candidate sources. The interface allows for specify-
ing the relevance of each feature in the request. The match
process returns a ranked list of candidates, together with a
brief description of their main skills and job experiences.
The matching criterion adopts both ontological categoriza-
tion and semantic analysis, but is not revealed in details. No
explanation of results is provided.

7http://www.sovren.com.
8http://www.hropenstandards.org/.
9http://hiring.monster.com/recruitment/Resume-Search-Database.aspx.
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In Fig. 1 we classify the four tools introduced above and
I.M.P.A.K.T., according the six dimensions emerged in
their analysis: input format of resumes, weighting mecha-
nism of search features, ranking of results, level of automa-
tion, information returned with ranked results, and candi-
date/job clone service.

We immediately remark that none of the analyzed tools
deals with team composition and core competence extrac-
tion, which are therefore outside the analysis, but still
represent services which I.M.P.A.K.T. has more than
the others. We also remark that such services ground on the
same ontology, E-R model, profile storing and reasoning
primitives in SQL. This makes I.M.P.A.K.T. an inte-
grated system for human resources management and not
only a recruitment service.

As for skill matching, we report in bold font the dis-
tinguishing peculiarities of each tool. Notably, all the tools
return a ranked list of candidates (see Row 3 in Fig. 1) but
most of them show only a standard portion of the resume
beside each returned candidate. Only I.M.P.A.K.T.
returns explanation of results, in the form of fulfilled,
additional, underspecified and conflicting features (see
Section 4.1 for details on such features).

Even more importantly, I.M.P.A.K.T. is the only one
using explanation to rank results. In particular, it extends
the search to non-exact matches in an Open World Assump-
tion, going further than merely subsumption-based match.
The match strategy of the other tools is not revealed in full
details, and, for some of them, it is not clear if an ontology
is employed to mine the context and the content of key-
words. In the worst case, no ontological structure is used and
neither subsumption between candidate and job description
holds. In the best case, an ontology is used but the tool does
not go further than subsumption-based match. This may
cause an unaffordable number of false negatives, which, in
turn, reduces the tool’s utility.

As for the first two rows in Fig. 1, a service for CV
translation from plain text and an improved mechanism for

weighting features are under investigation. Their implemen-
tation will be part of our future work.

We did not report in bold font the automation level of
SSME, because the adoption of full automation in skill
matching is controversial. Many systems (see RESUMIX,
as an example) leave the final choice up to humans and
claim semi-automation as a noteworthy possibility.

2.2 Review of related literature

The knowledge compilation process underlying
I.M.P.A.K.T. makes it able to share some features with
DB-based approaches to skill management and some others
with logic-based ones. Therefore, we first report on the DB-
based solutions to resource matching related to ours. Then,
we compare the framework underlying I.M.P.A.K.T.
with logic-based research proposals.

A feature not new in database querying and provided by
our system, is the possibility to take into account both user
preferences and strict requirements in the overall retrieval
procedure. In database querying, infact, the need to provide
users with a set of answers taking into account the pres-
ence of preferences has been recognized. Two competing
approaches emerged so far, thanks to the work by Chomicki
[11], though not specifically applied to skill management.
The first one—defined as quantitative—models preferences
by means of utility functions [7, 34], whereas the sec-
ond qualitative one uses logical formulas [11, 32]. In other
words, in the qualitative approach, the preferences between
the tuples in the result set of a query are directly specified,
usually by using binary preference relations. In the quanti-
tative approach, preferences are instead indirectly expressed
by using scoring functions that associate a numeric score to
each tuple in the result set. Then, a tuple t1 is preferred to a
tuple t2 iff the score of t1 is higher than the score of t2.

Differently from both the above introduced approaches,
we do not define a specific query language for preference
management. In fact, we are interested in providing a

Fig. 1 Comparison of semantic-
based recruitment systems
(distinguishing peculiarities are
reported in bold font)
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powerful tool exploiting only standard SQL, which is
both well-known in enterprise environments and commonly
employed in resource management frameworks implemen-
tation. Moreover, in preference-based approaches, tuples
represent classical structured information. On the other
hand, several works have been presented [30, 40] deal-
ing with non-structured information, i.e. textual descriptions
representing informative needs. On the contrary, we manage
semantic-based information, properly modelled and stored
in tuples of a database, such that reasoning tasks can be
performed over them.

Several approaches have been presented, where databases
allow users and applications to access both ontologies and
other structured data in a seamless way.

An approach aimed at classification in SQL databases of
ontologies formalized in ELH has been presented in [18].
Furthermore, [56] shows a translation of ALN -concepts
into pairs (database, query) such that to decide Subsump-
tion C � D one evaluates the query from D over the
database from C. In this way, subsumption between the
original concepts can be decided as query answering over
a database. These approaches are devoted only to knowl-
edge representation, since they solve subsumption, and not
to non-standard reasoning services like Concept Abduc-
tion and Contraction (actually such services do not even
have a formalization in ELH). Another possible optimiza-
tion is to cache the classification hierarchy in the database
and to provide tables maintaining all the subsumption rela-
tionships between primitive concepts. This happens for
example in Instance Store (iS) [4], a system for reason-
ing over OWL KBs specifically adopted in biomedical-
informatics domains. iS is also able—by means of a hybrid
reasoner/database approach—to reply to instance retrieval
queries w.r.t. an ontology, given a set of axioms assert-
ing class-instance relationships. A comparison between iS
and our approach shows that the former reduces instance
retrieval to pure TBox reasoning and it is able to return
only exact matches, whilst we use an enriched relational
schema storing only the ABox (i.e. facts) in order to provide
a logic-based ranked list of results.

Das et al. [12] developed a system that stores OWL-
Lite and OWL-DL ontologies in Oracle RDBMSs, and
provides a set of SQL operators for ontology-based
matching. Jena 2 Ontology Stores [63], Sesame [8] and
Oracle RDF Store use a three columns relational table
〈Subject, P roperty, Object〉 to memorize RDF triples
whereas other ontology storage systems, such as DLDB [45]
and Sesame on PostgreSQL [8], adopt binary tables. The
most popular and recent OWL storage is OWLIM [33]. It is
a Sesame plug-in able to add a robust support for the seman-
tics of RDFS, OWL Horst and OWL2 RL [44]. Another
system exploiting DBMS techniques to deal with reason-
ing tasks (i.e. subsumption check and instance retrieval)

is OWLDB.10 It defines a methodology for translating
SHOIN inference rules into relational database queries,
with benefits in scalability and performance. SHER [19] is
a highly-scalable OWL reasoner performing both member-
ship and conjunctive query answering over large relational
datasets using ontologies modeled in a subset of OWL-DL
without nominals. It relies on an indexing technique sum-
marizing database instances into a compact representation
used for reasoning. It works by selectively uncompressing
portions of the summarized representation relevant for the
query, in a process called refinement. Internally, SHER uses
Pellet to reason over the summarized data and obtain jus-
tifications for data inconsistency. SHER allows for getting
fast query answering, but does not provide a ranked list
of results. PelletDB11 provides an OWL 2 reasoning sys-
tem specifically built for enterprise semantic applications.
It combines Pellet’s OWL capabilities and scalable native
reasoning of Oracle Database 11g so ensuring performance
improvements w.r.t. the use of such technologies separately.
Differently from the previous approaches, one of the most
widespread DL-reasoners, i.e. KAON212, does not imple-
ment the tableaux calculus, but it reduces a SHIQ(D)

knowledge base to a disjunctive datalog program. An
inference engine for answering conjunctive queries has
been so developed applying well-known deductive database
techniques.

All the cited systems, although using languages more
expressive than I.M.P.A.K.T., are only able to return
either exact matches (i.e. instance retrieval) or general query
answering. Instead, we use an enriched relational schema
to deal with several non-standard inferences, to provide
effective value-added services. This peculiarity is due to
the logic-based nature of I.M.P.A.K.T.: the knowledge
compilation process is able to embed an informative con-
tent otherwise hardly extractable with classical DB-based
approaches.

The benefits of semantic technologies in enterprise
knowledge management have been pointed out since the
1990s and continue to be widely recognized—even in very
recent works [28, 31, 60]. In particular, several approaches
propose ontologies as knowledge repositories, to provide
a common vocabulary and to model general Knowledge
Management procedures [27] and tools [10].

A relevant issue arises in using ontologies once they have
been built, i.e. reasoners and reasoning services must be
designed and implemented to take full advantage from the
effort placed in structuring an ontology. Also, an intense
use of inference services is required [42, 43] to justify the
computational cost of their performance.

10http://owldb.sourceforge.net/.
11http://clarkparsia.com/pellet/.
12http://kaon2.semanticweb.org/.
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On the contrary, although several semantic facilitators
have been proposed in literature for several scenarios and
techniques [48, 50, 57, 64] often they do not fully lever-
age the ontological structure, limiting their inferences to
simple subsumption matching. The work by Colucci et al.
[13] gathers several semantic-based approaches to retrieval,
based on specifically devised non-standard services in
Description Logics. Thanks to them, the matchmaking pro-
cess may be extended w.r.t. exact match. An approach seem-
ingly similar in overcoming exact matches has also been
proposed [5]. It extends the one for measuring similarities in
ontologies by Ehrig et al. [21] for combining the advantages
of similarity-based search with those of ontology-based sys-
tems. Nevertheless, such an approach does not provide an
explanation of results in cases of non-exact matches.

The approach to skill matching by Hefke et al. [26] may
appear close to the above-mentioned one [13]. It is based on
a technique presented by Stojanivic et al. [49] for ranking
query results. The relevance of query outcomes is com-
puted taking into account the structure of the underlying
domain (using the Knowledge Base content) and the infer-
ence process characteristics. The ranking, though providing
a useful support to the choice between the returned profiles,
only classifies answers w.r.t. queries formalized with a well-
defined structure. Such an approach lacks expressiveness in
the querying process. Moreover, the Open World Assump-
tion is not made, because only answers explicitly providing
characteristics required by the query are considered. Finally,
no explanations are provided about the rationale in case of
absence of match.

Mochol et al. [38] address the role of semantic tech-
niques in improving the accuracy of job search. The authors
propose to describe candidates and jobs according to so-
called thematic clusters, which represent specific portions
of CVs and job postings. The similarity of each pair of
corresponding clusters is then computed on an ontologi-
cal basis and contributes to the calculus of total similarity
between the candidate and the job. Although sustaining
semantic-based search, the authors raise important outstand-
ing problems, like the impossibility to express the duration
of a particular experience (e.g., 3 years experience in Java
programming) and the loss of job applications which do not
fit 100 % to the defined requirements but are still accept-
able for the employer (e.g., 3 years instead of 5 years
industry experience). To address such needs, the authors
propose a query relaxation approach supporting the rak-
ing of results and reducing the number of false negatives.
Notably, I.M.P.A.K.T. overcomes both the problems
raised by Mochol et al.: it supports the specification of
years of experience related to each profile features and per-
forms an extended matchmaking, which not only returns
imperfect matches but also explains the reason for such an
imperfection.

Fazel et al. [22] propose the formalization of job
announcements and resumes in a given template in DLs. The
template distinguishes skills in requirements and desires,
and performs match only on requirements, using desires
only for ranking matching candidates. I.M.P.A.K.T.
allows for such a distinction, but also returns candidates
slightly conflicting the job posting, together with the rea-
son for the mismatch. Moreover, the approach by Fazel
et al. does not investigate and motivate the adopted DL
and does not exploit its reasoning services. The match is
based on measures for semantic similarity and seems not
to take much advantage from the proposed formalization
in DLs. In other words, it is not clear how the logic-based
characterization of employed terms affects the ranking pro-
cess. On the contrary, I.M.P.A.K.T. performs the match
(and all other supported processes) by implementing well-
investigated inferences in DL, in a feasible and unambigu-
ous fashion. The choice of the DL is therefore motivated by
the feasibility needs and made clear to the reader.

Very recently, an approach for reasoning under uncer-
tainty and vagueness, adopting a fuzzy Description Logics,
has been applied to the job market [29]. The fuzzy exten-
sion copes with the need to manage vague and uncertain
information, like the salary, the age, and the daily working
hours, so to give flexibility to the query process. In par-
ticular, Dempster-Shafer Framework and Dempster’s rule
of Combination are used to reach an agreement for match-
making between a job seeker and a recruiter. This theory
is suited for preference fusion situations. The matchmaking
process implements a set of Semantic Web Rule Language
(SWRL) [41] rules, executed to define Offer and Seeker
constraint factors. As for the approach by Fazel et al. [22],
the underlying ontology models concepts in a two-fold fash-
ion: the same entity (e.g., Degree) has one conceptualization
as requirement (e.g., RequiredDegree) and one other as pref-
erence (e.g., PreferredDegree). Duplex conceptualizations
are also set to differentiate offered features (e.g., Seek-
erPreferences) from searched ones (e.g., SkillPreferences).
This is due to the choice of managing the JobSeeker and
the JobOffer in different templates, to be logically com-
pared by applying above mentioned rules. Thanks to knowl-
edge compilation, I.M.P.A.K.T. is able to return and
explain also almost-exact matches, only through standard
SQL queries translating well-defined reasoning services.
Notably, I.M.P.A.K.T. ontology allows for modeling
both resumes and job offers with the same template, without
splitting the same entity into different concepts.

The design of an adaptive approach based on auto-
matic matching learning has been proposed for the media-
tion between recruiters and candidates [36]. This approach
should be able to calculate the transformation cost of a given
profile into a requested job offer, so that profiles with higher
transformation cost should rank worse than those with lower
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cost. The approach is just sketched at design level, but the
authors outline the importance of: i) using knowledge bases
to avoid multiple conceptualizations of the same entity;
ii) having a weighting mechanism for the formalization of
requests; iii) augmenting the number of matches through a
mediation process. The design of I.M.P.A.K.T. shares
this vision, so that these three issues are addressed by the
system.

The research by Rácz et al. [46] extends the results of an
exact subsumption-based matching, by taking into consider-
ation similarities between different skills that are not related
by the subsumption relation. In particular, the approach
computes the probability of having some required skills on
the basis of the explicitly hold ones. Then, a probabilistic
matching based on the maximum entropy model is ana-
lyzed: the match value of a job offer and an application is
the result of a probabilistic query. The number of false pos-
itives deriving from this approach is not investigated and no
explanations is given for retrieved matches.

From the literature reviewed so far, it emerges that:

– all the approaches propose a semantic-based represen-
tation of human resources domain;

– logic-based matching (possibly based on subsumption)
of candidates and offers is the ideal one, but often
returns too small of a number of candidates;

– a mechanism for weighting the importance of features
required/offered is provided in each approach;

– each approach adopts a different approximation strat-
egy to gain matching chances.

In the following, we show how I.M.P.A.K.T. follows
the principles itemized above, but presents several distin-
guishing features w.r.t. existing approaches. In particular,
it is a semantic-based system, which incorporates in a
unique modeling framework knowledge management solu-
tions related to different organizational needs, rarely—if
ever—faced from an integrated perspective. To the best of
our knowledge, it is among the few systems fully exploit-
ing the knowledge representation effort spent in model-
ing informative resources. I.M.P.A.K.T. proposes, in
fact, significant explained solutions double-tied with some
Description Logics inferences, specifically developed for
explanation purposes. This ensures the originality of system
functionalities.

In all the revised approaches, the approximation strat-
egy is not made clear to the user (either the recruiter or the
candidate), while I.M.P.A.K.T. makes all the informa-
tion used for ranking candidates explicit and available for a
possible mediation processes.

Moreover, we stress that I.M.P.A.K.T. completely
differs from the system we presented in our past research
[16], which: i) is fully logic-based and therefore has retrieval
times not feasible in a real scenario; ii) lacks of a mechanism

for distinguishing requirements and preferences in the query
process; iii) grounds on a different approximation strat-
egy and then returns less matches, with the explanation of
only missing and conflicting features; iv) does not offer
the possibility to mediate match starting from the provided
results.

On the contrary, the modeling effort spent in knowledge
compilation makes I.M.P.A.K.T. significantly original.
It is in fact, able to perform in feasible times tasks related to
knowledge representation and reasoning by only reverting
to a DBMS.

3 Modeling the knowledge base

In the following, we assume the reader is familiar with
basic DLs formalism and reasoning services. Nevertheless,
a short introduction to DLs may be found in Appendix A for
interested readers.

I.M.P.A.K.T. framework aims at properly storing
profiles (i.e. structured CVs, see Definition 1 for its for-
malization), to efficiently perform reasoning services only
via SQL standard queries over a relational database fully
mapping the KB. Provided services are related to three cate-
gories of human resources management business processes
and rely on a unified framework for knowledge represen-
tation. I.M.P.A.K.T. takes all the information needed
to understand and manage the domain of human resources
from a specifically developed modular ontology. The ontol-
ogy currently includes nearly 5000 concepts modeling both
the technical and the complementary skills a candidate may
hold. In particular, by technical skills we mean the candi-
date background knowledge about specific technologies and
tools, while by complementary skills we mean personal and
social abilities. In order to give an idea of the modeling
effort, we note its development took one year with a work-
ing team composed of three knowledge engineers and one
domain expert.

An upper level sketch of the modular KB structure,
denoted by K is shown in Fig. 2, with reference to both the
intensional (TBox T ) and the extensional (ABox A) com-
ponents defined in Appendix A. Of course, the ontology

Fig. 2 Skill KB overview
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modularity allows for extending it whenever a new category
of work-related features is identified. Such an extension
would change the knowledge compilation schema, whose
construction process is able to support the incremental
introduction of new modules in the ontology, as shown in
Section 3.1. Hereafter, the content modeled in each ontology
module is briefly described:

– Knowledge models the hierarchy of possible candi-
date competence and technical tools usage abilities,
including classes like FunctionalProgramming,
Database, PHP and ZendFramework, to name a
few; moreover, the module provides a property to spec-
ify, for each competence, the related experience role
type (e.g., developer, administrator, and so on) and a
predicate to convey the experience level, expressed in
work years;

– JobTitle models the hierarchy of possible
job positions, such as TeacherAssistant or
DatabaseAdministrator; the module also pro-
vides a predicate to specify the job experience level
(years).

– Industry models the hierarchy of industrial sectors
where a candidate may have worked, such as
InstitutionalAreas,ResearchLaboratories,
CompanyDepartments; a module predicate allows
also for defining years of work experience in a
specific industry.

– ComplementarySkill models the class hier-
archy about complementary attitudes (a.k.a. soft
skills) such as Cooperation, StressTolerance,
Leadership, ProblemSolving, which complete
CV technical skills and competence and often help
evaluating a candidate profile.

– Level models the hierarchy of candidate edu-
cation and training levels: from basic education
to MasterDegree, the whole candidate qual-
ifications can be specified including specific
Certifications she gained.

– Language models the hierarchy of possible lan-
guages known by the candidate and provides three
concrete features to further classify language knowl-
edge in verbalLevel, readingLevel and
writingLevel and assign a reference level (from
1—basic—to 3—excellent) to such language skills.

In the following, we formally denote by T = {Mi |0 ≤
i ≤ 6} the whole skills ontology adopted by the current
I.M.P.A.K.T. implementation. All the classes model-
ing technical and complementary skills, briefly described
above, belong to one of the ontology submodules Mi , with
i > 0, shown in the lower layer in Fig. 2. The component
Profile Template in Fig. 2 is the main ontology module, M0.
It directly imports all the previous modules and models of

all the properties needed for describing the candidate profile
through the above detailed classes. We define such proper-
ties by the name entry points. In particular, Profile Template
includes one entry point for each imported sub-module:
as an example, hasComplementarySkill (or alternatively
hasIndustry) is the entry point which allows for specify-
ing features of the candidate profile related to the category
ComplementarySkill (respectively Industry).

Formally, an entry point is defined as follows:

Definition 1 (Entry Point) Given the skill ontology T , an
Entry Point R0

j with 1 ≤ j ≤ 6, is a property defined in

the module M0 such that
(
R0

j

)I ⊆ ΔI × M.
j .

In order to fully represent the features of Human
Resources management, real-life examples suggest that at
least the following constructors are needed: conjunction,
universal and existential quantification, and concrete fea-
tures (see e.g., Robert profile described at the end of this
section). We did not find evidence that atomic negation is
needed, at least when modeling a knowledge profile; in fact,
profiles never require that a candidate does not know some-
thing. Also for describing a CV, negative information is not
provided (no one starts a list of things s/he does not know).
However, the interplay of existential and universal quantifi-
cation leads to reasoning problems that are not computable
in polynomial time [1, Ch.3], and such computational com-
plexity hampers the translation into SQL of our problems
(see Appendix B for proofs and a discussion). Therefore,
I.M.P.A.K.T. adopts a CV representation (see Defini-
tion 2) allowing for reasoning only on FL0(D) concepts
which represent knowledge about our domain. Such a DL
does not allow for atomic negation, coherently with the
domain assumption motivated above, and drops existential
quantification. As a consequence, each ontology module
Mi , with i > 0, is modeled according to the formalism of
FL0(D).

Thanks to the knowledge modeling outlined so far, it
is possible to model Candidate Profiles in the ABox (see
Fig. 2). We notice that all personal information in the CV,
which are structured data by definition (i.e. first/second
name, address, telephone, car availability, etc.) are not con-
sidered for the logic formalization, given that they can
be more properly represented straightly in the relational
schema. The CV classification approach we propose is
based on a role-free ABox, which then includes only con-
cept assertions of the form P(a), stating that the candidate
a (i.e. her CV description) offers profile features P .

The effectiveness and the efficiency of I.M.P.A.K.T.
framework is intuitively double-tied to the design of the
Entity-Relationship (E-R) model: only a properly designed
storing of both ABox instances and TBox axioms may make
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the further reasoning stages work. Before starting with the
description of the employed E-R model, we need to provide
readers with some crucial definitions.

Definition 2 (Profile) Given the skill ontology T , a profile
P is an ALE(D) concept defined as a conjunction of exis-
tential quantifications, P = �(∃R0

j .C), with 1 ≤ j ≤ 6,

where R0
j is an entry point and C is a concept in FL0(D)

modeled in the ontology module Mj .

We notice that the description of a profile would need
the alphabet of ALE(D), but its structure is constrained by
Definition 2; we cannot therefore exploit the full ALE(D)

expressiveness to model the knowledge at hand. We point
out, also, that the profile structure given in Definition 2
allows for six types of conjuncts modeling CV features,
but the number of features is not constrained: the six entry
points are just a way to identify CV sections and describe
all items belonging to them.

The currently implemented list of possible conjuncts of a
profile P is reported in Table 6 in Appendix C.

3.1 Knowledge compilation schema

Our knowledge compilation problem aims at translating the
skill knowledge base into a relational model, without loss
of information and expressiveness, in order to reduce on-
line reasoning time. So, relational schema modeling is the
most crucial design issue and it is strongly dependent on
both knowledge expressiveness to be stored and reasoning
to be provided over such a knowledge.

Notice, that all non-standard reasoning services per-
formed by I.M.P.A.K.T. process the atomic informa-
tion making up the knowledge descriptions to be stored
rather than the concept as a whole. For this reason, the avail-
ability of a finite normal form for such descriptions turns
out to be very useful and effective. We recall that FL0(D)
concepts can be normalized according to the Concept-
Centered Normal Form (CCNF), [1, Ch.2], through the
recursive application of the formulas in Fig. 3, until no rule
is applicable at every nesting level.

A finite normal form is instead not available for ALE(D)

concepts and this motivates our choice to model CVs
according to Definition 2. I.M.P.A.K.T. exploits all the
informative content needed for the on-line reasoning phase

Fig. 3 Rules for FL0(D) CCNF

by extracting FL0(D) components (namely each C in a
Profile—see Definition 2) from modeled CVs.

In the following, we provide Definition 3 to denote what
we mean by CCNF of a concept F—CCNF(F )—in the rest
of the paper.

Definition 3 (CCNF(F )) Given the skill ontology T :

1. if F is a concept description in FL0(D) modeled in the
ontology module Mj , with 1 ≤ j ≤ 6, then CCNF(F)

is the concept-centered normal form of F , computed
according to rules in Fig. 3.

2. if F is a conjunct in Definition 2, F = ∃R0
j .C,

we denote by CCNF(F ) the concept description
CCNF(F) = ∃R0

j .CCNF(C).
3. if F is a Profile according to Definition 2, F = �(CJ ),

with CJ = ∃R0
j .C, we denote by CCNF(F ) the

conjunction of all CCNF(CJ ).

The E-R model resulting from knowledge compilation is
sketched in Fig. 4. In particular, the schema in Fig. 4a shows
all the entities needed to represent the Tbox T axioms and
is obtained according to the following design rules:

1. a table CONCEPT is created to store all the atomic infor-
mation managed by the system: i) concept and role
names; ii) the CCNF atoms of all the FL0(D) concepts
defined in modules Mj , with 1 ≤ j ≤ 6. Among
attributes of CONCEPT table, a specific relevance is
assumed by level: it indicates the depth level of the
concept name in the ontology (taxonomy).

2. three tables mapping recursive relationships over the
table CONCEPT—namely PARENT, ANCESTOR and
DESCONCEPT—are created to store, respectively, for a
concept C, information about its parents, its ancestors
and the atoms of its CCNF—CCNF(C)—in case C is a
defined concept.

3. a table Rj (X) is created for each entry point R0
j (see

Definition 1), where X is a set of attributes X =
{prof ileID, groupID, conceptID, value, lastdate}
detailed in the following (see Fig. 6 for a toy
example).

Notice that, thanks to the third rule, our model can be
easily extended. If module M0 in T is enhanced by a new
entry point in order to capture a novel aspect of candi-
date CVs, then the schema may be enriched by adding the
corresponding table Rj (X) to it.

The schema in Fig. 4b models instead the entities needed
to store all features of candidate profiles P(a).

Notice that Fig. 4a and b share the same tables Rj (X),
but from different levels of abstraction. In fact, the ontol-
ogy modules in T define the schema level by determining
both the number and the structure of tables Rj (X), whereas
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Fig. 4 Database relational schema

ontological features of candidate profiles P(a) in A repre-
sent the instance level and populate such Rj (X) tables.

Thus, all features modeled in profile descriptions accord-
ing to Definition 2 are stored in tables Rj (X) related to
the involved entry points, while PROFILE table includes
the so called structured information: extra-ontological con-
tent, such as personal data (e.g., last and first name, birth
date) and work-related information (e.g., preferred work-
ing hours, car availability). Intuitively, each individual a is
involved in one P(a) assertion only, while the same feature
P could be offered by more than one candidate.

Once the CCNF(P ) of a profile P = �(∃R0
j .C)—with

1 ≤ j ≤ 6—has been computed according to Definition
3, the assertion P(a) is stored in the database. In particu-
lar, I.M.P.A.K.T. produces a unique identifier for the
candidate a, assigned to attribute prof ileID in Table PRO-
FILE, and, for each conjunct ∃R0

j .C belonging to P(a), it
adds one tuple for each atom of the CCNF(C) to the related
table Rj (X).

In order to better clarify the role of tables Rj (X), con-
sider the informative content in HASKNOWLEDGE (i.e.
Rj = hasKnowledge). In such a table, I.M.P.A.K.T.
archives all technical skills and competence held by P(a),
where each conjunct ∃hasKnowledgeC describes a single
skill of P(a). Thus, the entry point hasKnowledge iden-
tifies the table for storing the profile competence, but the
information actually modeling the held skill is described
by C—or equivalently by CCNF(C). As a consequence,
to fully convey all the competence and technical knowl-
edge in a given profile (identified by profileID), the
full set of tuples in HASKNOWLEDGE table, related to that
profileID, is needed. We notice that the same candidate
profile P(a) may include more than one conjunct involving

the same entry point. For example, both ∃hasKnowledgeC

and ∃hasKnowledgeD could belong to the same P(a). In
accordance with the relational schema introduced so far, the
atoms of both CCNF(C) and CCNF(D) are stored in the
same table HASKNOWLEDGE, but two different groupID

values are assigned to C and D atoms, respectively (see
Fig. 6 for a toy example).

To further clarify both usefulness and effectiveness of the
previous E-R modeling w.r.t. skill and talent management
domain, a toy profile description is proposed hereafter.

Let us suppose Robert is a candidate; his profile can be
described as: “Robert speaks English with a scholar level
whereas he is doing better with written English. He has a
degree in Computer Science Engineering, with mark equal
to 110 (out of 110), an excellent experience in Java pro-
gramming (5 years until December 10, 2010) and he is
two years experienced in PostgreSQL DBMS (until July,
2011), ...”. Robert profile can be represented according to
the following features:

– hasLevel - Computer Science Engineering Degree
(final mark = 110)

– hasKnowledge - Java (knowledge type = programming,
years of experience = 5, last update = 2010-12-10);
PostgreSQL (years of experience = 2, last update =
2011-07-31)

– knowsLanguage - English (verbalLevel=1, writin-
gLevel=2).

Robert profile is modeled according to Definition 2 and
Table 6 (see Appendix C) in a concept P as in the following:

∃hasLevel.(ComputerScienceEngineeringDegre�
=110 mark)�
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Fig. 5 The ontology sketch
used as reference in examples

∃hasKnowledge.(Java�∀skillT ype.P rogramming

� =5 years� =2010−12−10 lastdate)�
∃hasKnowledge.(PostgreSQL�= 2years �
=2011−07−31 lastdate)�
∃knowslanguage.(English� =1 verbalLevel �
=2 writingLevel).
I.M.P.A.K.T. normalizes and splits P in compo-
nents then stored in the three tables: HASKNOWLEDGE,
HASLEVEL and KNOWSLANGUAGE.

With reference to the model in Fig. 4 and ontol-
ogy sketch in Fig. 5, tuples storing only the conjunct

∃hasKnowledge.(Java � ∀skillT ype.P rogramming �
=5 years� =2010−12−10 lastdate) are reported
in Fig. 6. The reader can notice that the
conjunct: ∃hasKnowledge.(PostgreSQL� =2 years�
=2011−07−31 lastdate) has a groupID value differ-
ent from 1 in Table HASKNOWLEDGE, but the same
profileID value.

In order to improve readability, in Fig. 4 we do not
represent tables needed to store intermediate results for
computing the final reasoning task. Such tuples are mate-
rialized in the proper tables and views, created at run-
time according to user requirements. Finally, the presented

Fig. 6 Tables filled to store one feature of Robert profile (prof ileID = 100)
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modeling approach translates a profile assertion P(a) of n

conjuncts into more than n database tuples (see Fig. 4, as
an example). It therefore increases the storage size, almost
linearly. Nevertheless, such a drawback is largely repaid
in terms of flexible match classes management and quick
logic-based ranking and explanation of results as reported
in the following.

4 I.M.P.A.K.T. in action

I.M.P.A.K.T. is a Java web services application. It uses
Jena API13 to access the underlying ontology model and
Pellet14 reasoner to classify ontologies in the pre-processing
phase. It is noteworthy that, every time there are no implicit
axioms in the reference ontology, it is possible to give up the
reasoner by disabling its service, thus improving system per-
formance. I.M.P.A.K.T. has been developed upon the
open source PostgreSQL 9.3 DBMS and uses: (1) auxiliary
tables and views to store the intermediate results; and (2)
stored procedures and b-tree indexes on proper attributes to
reduce retrieval times. Moreover, the compliance with stan-
dard SQL makes I.M.P.A.K.T. available for a broad
variety of platforms.

A real data set originated from three different employ-
ment agencies—one having the headquarter in Italy and
the other two in France—was initially created by collecting
approximately 180 CVs of candidates specifically skilled in
the ICT domain, so to simulate the scenario of an actual
company in the ICT industry. Such a dataset has also been
exploited for an iterative refinement phase of both the Skill
Ontology development and the setting of the Skill Matching
parameters (i.e. entry points levels and weights in scoring
strategy).

In the next subsections, we show I.M.P.A.K.T.
working mode through an extended example covering,
respectively, three services for human resource manage-
ment: i) skill matching for the retrieval of ranked referral
lists, ii) working team composition, iii) automated extrac-
tion of strategical enterprise competence. The subset of ten
candidate profiles (out of 180) used throughout the exam-
ple is given in Appendix D. Profiles have been chosen in
order to bring out the special features of our approach dur-
ing the presentation of solution processes. To this aim, we
also consider in the following up-to-date all the features tied
to experience years specification in each candidate profile.
We outline, that actual semantic profiles can be imported by
editing I.M.P.A.K.T. Graphical User Iinterface (GUI),
specifically built for inserting both structured information
and ontologically ones by means of ontology browsing.

13http://jena.apache.org/.
14http://pellet.owldl.org/.

4.1 Skill matching

When dealing with the search for the right candidate to
assign to a job, recruiters are often in front of cases of non-
perfect match: the availability of knowledge profiles fully
satisfying a job request, even though desirable, is quite a
rare event. In most cases, therefore, the search for a can-
didate profile more specific than the knowledge request at
hand fails and needs to be followed by the search for profiles
only approximately matching the request.

Obviously, in order to evaluate the matching degree
between a job request and a candidate profile, it is nec-
essary that both of them share the knowledge base used
for representation. Thus, the job requests submitted to
I.M.P.A.K.T. need to be represented according to the
syntax detailed in Definition 2, that is the same formalism
employed for candidate profiles representation. Accord-
ing to the same profile data structure, both required and
provided knowledge profiles are modeled and each con-
junct exists ∃R0

j .C represents either a feature to search or
to store.

The formal approach adopted by I.M.P.A.K.T. to
perform the Skill Matching process has been presented
in our past research [55]. We here just recall that, for a
candidate profile P(a) to fully satisfy a job request F ,
both formalized as a DL concept description, there should
exist a subsumption relation between P and F , formally
P � F . If, instead, subsumption does not hold, specific
non-standard inferences can be exploited both to retrieve a
ranked referral list of candidates only approximately match-
ing the request, and to explain the reasons for the absence
of a perfect match in terms of missing (through a Con-
cept Abduction Problem) or conflicting (through a Concept
Contraction Problem) features.

Moreover, a job opening may have some features strictly
required, which have to be necessarily fulfilled by selected
candidates, and some other characteristics managed as pref-
erences. Thus, both groups of user requirements (prefer-
ences FP and strict constraints FS) compose a job request
F . In the most general case of job request F containing
both FS and FP , I.M.P.A.K.T. performs a two-step
matchmaking approach, namely Matchmaking, which starts
with Strict Match process, computing a set of profiles fully
satisfying strict requirements (i.e. we can retrieve candidate
profiles P(a) more specific than FS) and then proceeds
with Soft Match process trying to approximately match pref-
erences with profiles belonging to the set returned by Strict
Match. The Soft Match is devoted to finding candidates
satisfying to some extent the preferences FP in the job
request F by implementing the above mentioned approach
to approximate matching. In particular, the search has to
revert also to candidates having some missing features
and/or having features slightly conflicting w.r.t. FP .

http://jena.apache.org/
http://pellet.owldl.org/
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In order to clarify Skill Matching behavior, we start from
a typical request of a recruiter:

I’m looking for a candidate having an Engineering
Degree (preferably in Computer Science with a final mark
equal or higher than 103 (out of 110)). A Doctoral Degree
is welcome. A good familiarity with written English could
be great. Furthermore s/he should be at least six years
experienced in Java and s/he should possibly have complex
problem solving capabilities.

I.M.P.A.K.T. provides a GUI to compose recruiter’s
requests: Fig. 7 shows such a GUI w.r.t. the previous exam-
ple request, which we refer to with Q2 in the following.
Observe that I.M.P.A.K.T. provides exactly the same
interface used for defining/updating the candidate profile,
coherently with our approach that defines the same template
for CVs and queries description.

By looking at Fig. 7, we shortly introduce all highlighted
panels in the following:

– Panel (a) provides a GUI section for each of the six
entry points (see Definition 1) described in Section 3,
with an additional Degree section only for recruiter
convenience;

– Panel (b) allows users to perform a keyword-based
search aimed at identifying ontology concepts model-
ing the requirements they have in mind (such a search
process involves concept names, labels and comments);
it allows one to also search candidates profiles compa-
rable to given ones by editing first and last name of the
known candidate;

– Panel (c) enables the user to explore both taxonomy and
properties of a concept selected to specify a given entry
point;

– Panel (d) shows all of the features required in the query;
– Panels (e)-(f): for each item in Panel (d), the GUI allows

users: (1) to specify whether the feature is a strict one—
Panel (f)—or if it is a preference—Panel (e); (2) to
delete the whole feature; (3) to complete the description
showing all the elements (concepts, roles and concrete
features) that could be added to the selected feature; (4)
to edit either feature atoms or existing feature values.

Q2 request shown in Fig. 7 can be summarized as:

1. strict requirements: Engineering Degree;
2. preferences: Computer Science Engineering Degree

and final mark >= 103; Doctoral Degree; Java with

Fig. 7 Query composition GUI
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experience >= 6 years; Complex Problem Solving
capabilities; Good Written English.

In the following, we show how the approach we propose
can provide an answer to Q2, including both strict require-
ments and preferences, w.r.t. the data set in Appendix D.
Part (a) of Fig. 8 presents the ranked list of returned candi-
dates (9 out of 10 available ones) with the related score. The
ranked list can be explained as follows:

– only 9 out of 10 selected profiles are returned by the
Strict Match. In fact, the candidate Carla Buono does
not fulfill strict requirements specified in Q2 and thus
she will not be part of the final result set;

– a small subset of candidate sample (i.e. Mario Rossi,
Daniela Bianchi and Elena Pomarico) is made up by
people with similar profiles: their CVs only differ by
experience years associated to either job titles, enter-
prise working or exploitation of a given competence.
In particular, years of experience are never speci-
fied in Elena Pomarico’s profile. Such profiles allow

us to make clear how these differences, even slight,
cause profiles to be differently ranked. Hence, Daniela
Bianchi is the best result among them because she fully
satisfies the Java experience requested by the recruiter
together with the strict requirements;

– the best results are Domenico De Palo and Daniela
Bianchi. The former satisfies several preferences but he
is 6 years experienced in object oriented programming
(a direct ancestor of Java programming in the reference
ontology) whereas the latter is 6 years experienced in
Java, as required. Observe that hasKnowledge entry
point, exploited to represent the user requirements of
Java programming, belongs to the main relevance level
in the ranking strategy;

– two profiles (i.e. Mario Rossi and Carmelo Piccolo)
include features slightly conflicting (according to the
Soft Match definition) with query preferences;

– several candidates (i.e. Mariangela Porro, Marcello
Cannone, Carmelo Piccolo, Lucio Battista and Nicola
Marco) satisfy only a few characteristics other than

Fig. 8 Skill Matching results GUI after Q2 execution
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strict requirements. The scoring mechanism ranks them
lower than all the other profiles, better filling query
preferences;

– many selected profiles have additional features w.r.t.
the query, although they do not affect the ranking
mechanism.

With reference to Fig. 8, for each of the ranked results,
the recruiter can ask for: (1) viewing the CV (Panel (b));
(2) analysing the employment and personal information
(Panel (c)); and (3) executing the match explanation pro-
cedure. In Fig. 9 match explanation outcomes of Mario
Rossi candidate are presented. In particular, in Panels
(a)-(b) an overview of the request is shown (differentiat-
ing strict constraints—Panel (a)—from preferences—Panel
(b)), whereas Panels (c)-(d)-(e)-(f) show the following
information:

– Panel (c) shows fulfilled features, i.e. features required
by the query and either perfectly matched by the candi-
date or slightly conflicting in her profile;

– Panel (d) provides additional features, i.e. technical
skills in the candidate CV not required at all by the
query or more specific than the required ones;

– Panel (e) gathers underspecified features, i.e. parts of
the query not explicitly specified in the retrieved CV;

– Panel (f) provides conflicting features as specified in the
retrieved CV.

Let us consider feature 6 in Panel (b) of Fig. 9: “at least
six years of Java experience”. By looking at Panel (c), it
can be noticed that Mario Rossi is 5 years experienced in
Java and Object Oriented Programming. Such a conflict is
highlighted in the GUI as shown in Panel (f) so making
the recruiter aware of profile features slightly conflicting
with the query. Notice that the same preference (i.e. the one
identified by ID = 6) generates two pieces of informa-
tion in Panel (c): the candidate CV includes both Java and
some Object Oriented Programming, 5 years experienced
knowledge. Such a duplication in fulfilled features does not
introduce redundancy and it is instead exploited to show

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9 Mario Rossi match explanation with conflicting features
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in Panel (f) CV conflicting features related to both Object
Oriented Programming (lack of one more year of working
experience in C++ and Visual Basic) and to specific Java
knowledge. Besides the conflicting features, Mario Rossi
also has some underspecified ones (see Panel (e)) and then,
he cannot fully satisfy the recruiter request.

4.2 Team composition

I.M.P.A.K.T. Team Composition service aims at sup-
porting the process of assigning more than one task to differ-
ent groups of available individuals: a process we denote by
many to many skill matching. The formal approach adopted
by I.M.P.A.K.T. to perform such a process has been
presented in previous work [54].

Such a service supports a Project Manager by automati-
cally providing a set of possible working teams for each task
or project activity. In particular, a project manager request
is composed by the descriptions of all the project tasks to be
covered. In turn, each project activity (or task) description,
PAi , is composed by three entities: (i) a description Ki of
the knowledge required for the task; (ii) a set of temporal
constraints Di and (iii) a number of required team members
mi . Formally, PAi = 〈Ki, Di, mi〉 where Ki holds a crucial
role in the selection of candidates profiles set at the basis of
the Team Composition process.

Coherently with the strategy adopted by the previously
detailed Matchmaking process, team composition takes full
advantage from the ontology modeling effort and adopts
the OWA. In fact, it allows one not only to find a team
that, based on provided skills descriptions, fully covers Ki ,
but also teams only approximating such a full cover. Of
course the search reverts to such a partial cover only when
a completely satisfactory group cannot be retrieved due to
lack of requested skills or temporal unavailability of candi-
dates. Moreover, the Team Composition process considers
all possible equivalent solutions—several combinations of
candidates allocation may exist—and leaves the selection
of the most proper set of assignments up to the Project
Manager, given the high level of subjectivity of the task.

We notice that, in order to retrieve the candidate profiles
satisfying as much as possible skills Ki of task PAi , both
Ki and P have to be described according to Definition 2.
In particular, Ki conjuncts of the form ∃R0

j .C employ only

the entry point R0
j = hasKnowledge: TeamComposition

involves currently only technical skills in the search process.
Given a set PA of project activities PAi = 〈Ki, Di, mi〉,

Team Composition process is basically performed according
to the following steps:

1. the Matchmaking process in Section 4.1 is performed
by taking, as input, each conjunct of a Project Man-
ager request, that is a job request F including only

hasKnowledge entry point, in accordance with the
above introduced considerations on Ki ;

2. for each PAi the candidates’ availability is checked by
joining the set of profiles returned by the previous step
with tuples in a table—AVAILABILITY—specifically
defined in the DB to store candidates temporal con-
straints (even though not represented in Fig. 4 for the
sake of synthesis). Only candidate profiles satisfying
the constraints in Di are returned;

3. the set of all candidate teams, Assignments =
{Assignments(PAi)|1 ≤ i ≤ N}, where each
Assignments(PAi) is a set of all possible teams cov-
ering PAi , is computed without taking into account the
need for executing PAj ∈ PA with i �= j . In turn,
each team in Assignments(PAi) is computed by tak-
ing into account both the need for covering as much as
possible required skills Ki and the required number of
team members mi ;

4. a Constraint Satisfaction Problem (CSP) [58] solver
computes the set of all possible solution teams solving
the whole set of project activities PA. Such solutions
are obtained by considering the elements in the set
Assignments returned at step 3 as variables and tem-
poral information in Di as constraints, for each activity
PAi : the final goal is obviously returning an assign-
ment set such that concurrent activities never involve
the same profile.

I.M.P.A.K.T. provides a GUI specifically built to
compose the inputs to Team Composition. According to
the above definition of project activities, let us consider a
project manager searching for a work team to employ in a
new project composed by 3 activities (see Panels (a)-(b) of
Fig. 10):

1. PA1 – Architecture Design

Start Date: 2014-09-01
End date: 2014-11-30
Team: from 2 to 3 candidates
Skill: Modeling tool (preference), Software Develop-
ment (preference)

2. PA2 – Data Layer

Start Date: 2014-10-13
End date: 2014-12-20
Team: 2 candidates
Skill: Object Oriented Programming (preference),
DBMS (preference)

3. PA3 – Implementation Layer

Start Date: 2014-12-15
End date: 2015-04-30
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a

b

c

d e

Fig. 10 Activities definition GUI

Team: from 2 to 3 candidates
Skill: J2EE (preference), Hibernate (preference)

Observe that, by using I.M.P.A.K.T. GUI in Fig. 10,
the project manager can describe each activity by means of
technical knowledge needed for solving it. It is also pos-
sible to set such required competence as strict requirement
or preference. For each project activity, Panel (d) in
Fig. 10 enables ontology browsing only for defining
required knowledge. In particular, Panels (c), (d) and (e)
provide the same functionalities (i.e. “global” keyword-
based search on ontology entities, ontology classes and
properties browsing, and features editing, respectively)
showed for the query composition GUI of Skill Matching
service (see Section 4.1 for details). Panel (b) is introduced
in order to edit all the activity features: name, start date,
end date, number of team members. Moreover, Panel (a)
shows an overview of all the selected skills for each activ-
ity. It is noteworthy that, by adding a required knowledge
in Panel (e), I.M.P.A.K.T. automatically performs the

matchmaking process, and then it highlights, by means of
a red icon, those skills not covered by any profiles. In our
example, Panel (a) shows a red icon for the knowledge
of a Modeling Tool to indicate that it cannot be satisfied.
This happens when no candidate experienced in the required
knowledge exists. In other words, before starting the com-
position process, the system acknowledges the user whether
each of the required task competencies is covered or not. In
this way, he can decide how to proceed: choosing another
competence and/or deleting the non-covered competence,
given that it does not have correspondence in candidates
retrieval nor in results composition.

With reference to profiles in Appendix D and to the
activities introduced before, team solutions are presented in
Panel (b) of Fig. 11. In particular, the figure shows team
members assigned by Solution 1. For example, Mario Rossi
and Lucio Battista are the selected team members for activ-
ity PA2, thanks to their experience, respectively, in object
oriented programming (i.e. Java, C++, and Visual Basic) and
DBMS, as showed by the “‘Competence”’ list in Panel (c)
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Fig. 11 Team Composition
results GUI

a

b

c

of Fig. 11. We point out that, the system is able to assign
the same Human Resource to different activities when these
one are not overlapped (e.g., Daniela Bianchi is assigned to
both activities PA1 and PA3).

For each activity, the previous panel presents candidate
lists to solve the task, and I.M.P.A.K.T. GUI also sup-
ports team completion process in case of selection of teams
smaller than required (i.e. teams indicated with a “warn-
ing” icon in the same figure’s panel). The team completion
process is performed using, again, the CSP solver having
as input the same temporal constraints but different vari-
ables. In fact, I.M.P.A.K.T. now considers a smaller
profiles set (candidates already selected are not to be con-
sidered anymore). An assignment is incomplete when no
other candidate covering both the required skills and the
selected temporal view exists. Hence, in order to select can-
didates among the available ones, several strategies can be
tested. I.M.P.A.K.T. currently favours candidates with
the highest rank value and, among equally ranked ones, it
chooses candidates with the highest number of additional
features w.r.t. the required ones.

Additionally, Panel (c) of Fig. 11 shows candidates
description (i.e. the relative CV and competence list), whereas
a temporal scheduling of work activities is represented
through a Gantt chart in Panel (a) of the same figure.

4.3 Core competence identification

In recent enterprise solutions research literature empha-
sis has been given, in particular, to the identification of
capabilities leading companies to business success: several
approaches to strategic management have been proposed
and classified according to the perspective they take on the
problem [23].

Many research contributions sustain the resource-based
theory of the company [61, 62] suggesting to search for
competitive advantage in unique company capabilities [2, 3,
24, 37].

Other proposals focus on the achievement of competitive
advantage through the deployment and exploitation of capa-
bilities embedded in business processes: such a dynamic
capabilities approach asks for continuous reshaping of
firms assets [52].

Alternative approaches [6, 47, 51] take the so-called
competence-based perspective, which identifies in the Core
Competence of the company as a whole source of competi-
tive advantage more crucial than its single, discrete, assets.
The notion of Core Competence was firstly defined [25] as
a sort of capability providing customer benefits, hard to be
imitated from competitors and possessing leverage poten-
tial. Further definitions of Core Competence have been



Embedding semantics in human resources management automation via SQL

proposed in the literature in the attempt of finding methods
for detecting such a collective knowledge [35, 39].

Our proposal takes the competence-based perspective
and in particular shares with it the interpretation of company
strategic competence as a collective asset, resulting from the
synergy of human resources.

To this aim, I.M.P.A.K.T. services rely on the com-
putation of partial Common Subsumers, formally defined in
our past research [14]. In that paper, it is proposed a Com-
mon Subsumer Enumeration algorithm determining the sets
of common subsumers of a collection {C1, . . . , Cp}. The
rationale of the algorithm is that of extracting from the set
of profiles at hand, the knowledge components shared by a
significant number of individuals in the set, with such a sig-
nificance level to be set as a threshold value by the people
in charge for strategic analysis. The algorithm works by tak-
ing as input a concept collection in the form of a Subsumers
Matrix and the above introduced threshold value.

I.M.P.A.K.T. implements the above recalled service,
but redefines the Subsumers Matrix as a Profiles Subsumers
Matrix, in order to cope with the features of the con-
cept collection at hand. The formal approach adopted by
I.M.P.A.K.T. has been presented in previous work [17].

In order to understand the rationale of Core Competence
Identification, we show how I.M.P.A.K.T. works with
reference to the example CVs shown in D. In particular,
in order for the problem representation to be more com-
pact, we take— w.l.o.g.—the following assumptions: i) only

CV information related to technical knowledge is taken into
account; ii) we consider a subset P of CVs in D such that
the modeled technical knowledge involves only concepts
represented in Fig. 5 and thus related to Computer Science
domain: P = {1, 2, 3, 4, 5, 9, 10}.

In Fig. 12, the I.M.P.A.K.T. GUI for the Core Com-
petence Identification process is shown. Panel (a) provides
the input user interface for choosing the degree of coverage
k and the desired entry points to be considered in the extrac-
tion process. Panel (b) lists all possible pieces of company
Core Competence, providing the user with the possibility
to visualize (in Panel (c)) the personnel holding such a
strategic asset.

5 Experimental evaluation

Section 4 shows the efficacy of the proposed approach,
with reference to its three main services, as performed by
I.M.P.A.K.T..

Assuming such an efficacy, we focus only on perfor-
mance tests, in order to evaluatedata complexityandexpression
complexity of our knowledge compilation approach.

We recall that both Team Composition and Core Compe-
tence Identification services rely on the performance of the
matching service introduced in Section 4.1. For this reason,
we start (see Section 5.1) by testing the performance of Skill
Matching process and then refer to the achieved results for

Fig. 12 Core Competence
Identification GUI
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evaluating the execution times of the other two processes
(see Sections 5.2 and 5.3).

Execution times are retrieved by running I.M.P.A.K.T.
on an Intel Dual Core server, equipped with a 2.26 GHz
processor and 4 GB RAM.

All tests measure the average time over ten repetitions of
the same request for each service.

Datasets specifically suited for testing each service have
been designed and described in the following subsections.
In particular, different datasets are selected among the ones
possibly returned by a specifically developed synthetic KB
instances generator. The generator is able to automatically
create satisfiable profiles according to Definition 2, accord-
ing to a generation criterion which may be set on the basis of
testing needs. For example, one may choose the features for-
mat (i.e. number of features for each entry point/relevance
level, number of numeric restrictions, minimum number of
specified technical skills, etc.). Indipendently on the service,
we built datasets in which profiles have a number of features
for candidate comparable to the average value evaluated in
the real data set discussed in Section 4.

5.1 Skill matching

As hinted before, we tested each service with reference
to datasets specifically selected for their suitability to the
solving approach to experiment.

In particular, for testing Skill Matching, we generated
five data sets, namely DS1, DS2, DS3, DS4, DS5 includ-
ing respectively 500, 1000, 2000, 3500 amd 5500 profiles.
The bigger datasets are supersets of the smaller ones. Fur-
thermore, the format of generated profiles is set to include
30 features for hasKnowledge entry point, 2 features for
hasLevel and knowsLanguage entry points, and 3 features
for hasJobTitle, hasIndustry and hasComplementarySkill
entry points.

In this specific service, queries to be performed need
to be properly selected for testing pourpose. In particular,
we refer to nine queries, which we consider significantly
different in expressiveness and which we classify into the
following three groups:

A queries including only strict requirements, described by
either generic concepts (Q4) or more specific ones (Q5);

B queries including only preferences, also represented
by either generic concepts (Q2) or more specific ones
(Q3);

C queries combining features in items A and B
(Q1, Q6, Q7, Q8, Q9).

We also notice that:

1. query Q1 is the formal profile (see Definition 2)
translating a real job request returned by http://www.
monster.co.uk/, exploited keywords: SQL, SSAS, OLAP
Cube, C#; Q1 thus includes 3 strict and 6 soft require-
ments for the entry point hasKnowledge, 1 strict and
3 soft requirements for the entry point hasComple-
mentarySkill, 1 and 3 soft requirements for the entry
hasIndustry and hasJobTitle, respectively.

2. queries from Q2 to Q7 include one feature per entry
point.

3. Q6 = Q2 ∪ Q4 and Q7 = Q3 ∪ Q5.
4. Q8 involves only three entry points, i.e. hasKnowledge,

knowsLanguage and hasLevel.
5. Q9 involves several features for each entry point.

Table 1 shows the retrieval times and the number of
retrieved profiles (#p) for each data set and request dis-
cussed above.

Reported times refer to three distinguished phases of
the matching process: query normalization (retrieval times
denoted by tn in Table 1), which is dataset-independent;
Strict Match (retrieval times denoted by tst in Table 1) and

Table 1 Normalization times (tn) and retrieval times for strict (tst ) and soft (tsf ) match, and number of retrieved profiles (#p) for datasets DS1,
DS2, DS3, DS4 and DS5 of, respectively, 500, 1000, 2000, 3500 and 5500 profiles

DS1 DS2 DS3 DS4 DS5

tn tst tsf #p tst tsf #p tst tsf #p tst tsf #p tst tsf #p

Q1 724.4 124.2 210.6 4 246.6 240.8 10 545.6 382.5 20 784.5 402.2 28 2334.8 551.8 144

Q2 335.8 0 305.7 461 0 456.8 927 0 563.6 1829 0 756.2 3202 0 1158.8 5029

Q3 474.8 0 440.5 396 0 578.2 740 0 782.2 1560 0 1624.8 2729 0 2775 4270

Q4 225.9 71.2 0 10 110.4 0 13 212.8 0 23 336.4 0 35 423 0 52

Q5 224.4 74.1 0 1 115.2 0 1 218 0 1 342 0 1 441.4 0 1

Q6 240.6 96.7 103.8 10 147.4 128.4 13 227.4 139.4 23 344.4 173 35 485.5 180.4 52

Q7 538.8 84.8 97.8 1 119.8 133.4 1 219.2 179.6 1 343.8 193.8 1 473.2 208 1

Q8 347 228.6 96.6 17 456.6 113 44 927 125.2 79 1277.4 132.4 131 2593.4 196.8 226

Q9 317.8 136.8 163 3 244.2 166.5 3 385.6 168.6 4 671.2 180 5 1245.8 252 7

Times are expressed in milliseconds

http://www.monster.co.uk/
http://www.monster.co.uk/
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Soft Match (retrieval times denoted by tsf in Table 1), which
also includes the final ranking process.

As for data complexity, the reader may notice that,
not surprisingly, retrieval times of both match processes
increase almost linearly with datasets size (e.g. see Q5). Fur-
thermore, Strict Match performance is dramatically affected
by #p (see results for DS5 in Table 1), whereas the Soft
Match retrieval times seem to grow slower with #p. We
observe that the more significant impact of the number
of retrieved profiles on Strict Match execution is due to
the fact that such a process involves, by construction, the
SQL intersection of several queries. Moreover, results of
Q5 are dataset-independent: the Strict Match process always
returns the same profile (i.e. no other profile satisfying strict
requirements exists in the datasets).

As concerns expressiveness complexity, we observe that:
(i) the retrieval times of queries classified in items A and
B increase with the query expressiveness; (ii) queries clas-
sified in item C, for which an execution of Strict Match
preliminary to Soft Match is needed, show times for Soft
Match notably reduced, so confirming the theoretical com-
plexity results. Moreover, for a number of retrieved profiles
greater than 3000 (see tsf in Q2 and Q3 on DS4, DS5), the
larger the data set is, the more the expressiveness of soft
requirements impact retrieval times. Noteworthy, the real
query Q1 generates, for each dataset, retrieval times com-
parable to all queries classified in item C, considering also
the #p value. As a general remark, the query expressive-
ness does not significantly affect retrieval times in the whole
matchmaking process involving both strict requirements and
preferences.

Finally, for giving the reader a hint on the effectiveness
of the presented approach in real enterprise scenario, where
commercial DBMS are often adopted, we also conducted
some tests on Oracle XE. We compared retrieval times
obtained by executing the same queries on both PostgreSQL
database and Oracle XE instance. Results confirm the per-
formance limits of exploiting open-source DBMS, revealing
retrieval times reduction of 90 percent for the execution over
Oracle XE vs. PostgreSQL for a dataset of 50000 profiles.

5.2 Team composition

Coherently with the above evaluation guidelines, we first
introduce the datasets and the queries adopted for the eval-
uation of Team Composition process. Concerning the first
design choice, we here use the same datasets DS1, DS2,
DS3 as in Section 5.2. The cardinality of such datasets (500,
1000 and 2000 profiles, respectively) may be considered
comparable to the size of the real-world companies in the
need for automatically composing multidisciplinary teams.

The queries adopted to evaluate how much the Match-
making process affects the retrieval times of Team

Composition service have been designed as described
below. We recall that each project activity description, PAi ,
is composed by three entities: (i) a description Ki of the
knowledge required for the task (Ki is described, accord-
ing to Definition 2, as conjunction of features of the form
∃R0

j .C, where R0
j = hasKnowledge); (ii) a set of temporal

constraints Di and (iii) a number of required team mem-
bers mi . In particular, each query is composed by combining
three heterogeneous project manager requests (PAi , with
i ∈ {1, 2, 3}), which differ from each other in the level of
expressiveness. Namely, the categories of project activities
in the following have been conceived:

– PA1 involves only rather generic knowledge (e.g.,
DBMS) in its component K1;

– PA2 involves in its component K2 also features with an
higher specificity (e.g., PostgreSQL) than PA1;

– PA3 involves in its component K3 very specific knowl-
edge, described by the most specific concepts in the
Skill Ontology taxonomy.

For each PAi we always ask for three team members
(mi = 3) and set Start date and End Date as in the project
description of Section 4.2.

Each query asks for three project activities, such that
each activity belongs to one category above. Moreover, we
identified three classes of queries, Pi , with i ∈ {1, 2, 3},
such that:

– P1 is a class of queries including only strict require-
ments and project activities made up by at least three
conjuncts in Ki ;

– P2 is a class of queries rewriting the same queries as in
P1 by managing all features as preferences;

– P3 is a class of queries combining both strict require-
ments and preferences and including project activities
made up by at least five conjuncts in Ki .

Times resulting from queries execution are reported in
Table 2. In order to better investigate on theTeamComposition
performance, for each project activity PAi we show retrieval
times w.r.t the service steps recalled in Section 4.2. In par-
ticular, in Table 2 , we denote by tst the time for Strict
Matching, by tsf the time for Soft Matching, by tca the time
for checking temporal constraints and by tCSP the time for
executing CSP solver. Moreover, we refer to the number
of profiles assigned to each activity PAi by #n and to the
number of project teams returned by the CSP solver by #sol.

We recall that, by construction, Strict and Soft Match are
automatically performed during the composition phase of
each project activity. Then, the availability check is exe-
cuted for each profile returned by the matching process.
Eventually, all candidate profiles are combined in different
possible team solutions through the CSP solver. According
to this, we here do not comment on retrieval times for the
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Table 2 I.M.P.A.K.T. Team Composition times (in ms)

No. profiles

500 1000 2000 500 1000 2000 500 1000 2000

P1 P2 P3

PA1

tst 35 102 114 0 0 0 38 85 122
tsf 0 0 0 516 898 1869 0 0 0
tca 75 77 81 90 98 91 73 74 80
#n 10 33 56 24 41 84 10 33 56

PA2

tst 62 79 148 0 0 0 36 64 104
tsf 0 0 0 217 352 809 236 172 355
tca 76 81 79 79 80 90 75 78 90
#n 53 104 196 93 187 377 71 146 270

PA3

tst 29 57 96 0 0 0 0 0 0
tsf 0 0 0 158 204 285 192 203 244
tca 48 60 69 78 71 89 71 85 83
#n 2 8 22 11 23 59 11 23 59

P

tDB 199 218 229 247 249 270 219 237 253
tCSP 661 1043 1156 1260 2017 1601 1631 1284 1257
#sol 4 11 19 14 20 54 12 16 23

t tc 860 1261 1385 1507 2266 1871 1850 1521 1510

matchmaking process which, by the way, confirm results
shown in Section 5.2.

The time for team composition is therefore, formally
defined as follows: ttc = tDB + tCSP , where tDB =

3∑
i=1

tcaPAi
(intuitively, tcaPAi

is the time need for checking

availability of candidate profiles matching component Ki

of PAi). In particular, tDB measures the time for checking
temporal constraints for retrieved candidates through SQL
queries executed on the PostgreSQL database, whereas tCSP

measures computation time for the adopted CSP solver.
As shown in Table 2, the time for checking availability

seems not to be affected much by the number of profiles
to be analyzed. On the other hand, the number of possi-
ble final solutions affects the computation time for the CSP
solver execution, that also represents the most time consum-
ing phase—if compared to both skill match and availability
check phases. We adopted a simple Java API for CSP
solution, because the proposed experimental evaluation is
preliminary and we are interested in proving only the fea-
sibility of the team composition. Performed tests suggest
instead to search for more suitable APIs for CSP compu-
tation, able to implement advanced mechanisms for CSP
problem optimization.

5.3 Core competence identification

As in the previous subsections, we are interested in the
evaluation of data complexity and expression complexity of
our knowledge compilation approach to Core Competence
extraction. To this aim, we first selected the most suit-
able datasets to perform the following two test campaigns:
1) the performance of our implementation is compared to
a fully logic-based one ([16]) and expression complex-
ity is evaluated; 2) data complexity of our approach is
evaluated.

A different pair of datasets is adopted in the two test
categories. More specifically, the first category works on
two datasets, DS1 and DS2 such that DS2 is more specific
than DS1, i.e. it is characterized—for the same number of
profiles—by a bigger set of resulting profile concept com-
ponents. The second test category instead adopts two other
datasets, DS3 and DS4, also such that DS4 is more specific
than DS3.

Moreover, in generating the datasets, profile features
have been set by taking into account only CV informa-
tion related to technical knowledge (i.e. profiles include
only conjuncts of the form ∃R0

j .C, where the entry point

R0
j = hasKnowledge).
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Fig. 13 PSM (a) and CSE (b)
computation time vs. number of
profiles. Times are expressed in
milliseconds
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The first test campaign is aimed at evaluating expres-
siveness complexity. In the evaluation of execution times,
we considered that Core Competence Identification is made
up by two main extraction steps: the Profile Subsumers
Matrix (PSM) computation, and the Common Subsumer
Enumeration (CSE) algorithm execution (we recall that
such algorithm takes the PSM as input). From now on, we
call tpsm the average time for computing a PSM, tcse the
time for performing CSE algorithm, and n the number of
profiles.

Figures 13 and 14 show the performance results with ref-
erence to subsets of 5, 10, 15 and 20 profiles in DS1 and
DS2 (such subsets are characterized by the same cardinality
as those evaluated in the fully logic-based solution [16]).

Adopting subsets of different cardinality allows for
investigating on the impact of the number of analyzed pro-
files on execution time. Figure 13 shows, in fact, tpsm

(Fig. 13a) and tcse (Fig. 13b), both in milliseconds, vs. n.
We recall that the computation of PSM asks for the reduc-

tion of the input profiles in so-called Profile Concept Com-
ponents [17]. Intuitively, the more specific the profile is, the

bigger the number of components making it up are. This
motivates the adoption of data sets of different specificity:
DS1 and DS2: the objective of evaluation is investigating
the relation between the number of profile concept com-
ponents resulting from the data set and the execution time,
when the number of profiles is given. Figure 14 presents,
in fact, tpsm and tcse vs. the profile concept components
number. We notice that both Fig. 14a and b refer to the
profile concept components deriving from DS1 and DS2:
for each value of n, the smaller computation time value
refers to DS1 and the bigger to DS2. In both experiments,
k = 0.3 × n.

By looking at the results, it can be noticed that the matrix
creation is the most computationally expensive process:
tpsm is in general bigger than tcse. Moreover, the number of
profiles affects the common subsumer enumeration process
more than profile subsumers matrix computation.

It is worth noticing how the adopted knowledge com-
pilation approach dramatically improves process perfor-
mance w.r.t. the fully logic-based one [16]: as an example,
matrix computation time for 20 profiles has changed from

Fig. 14 PSM (a) and CSE(b)
computation time vs. profile
concept components
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Table 3 Core Competence extraction times (in seconds)

Datasets cardinality

500 1000 2000

tpsm

DS3 0.87 1.1 1.74

DS4 3.91 9.24 27.29

tcse

DS3 0.21 0.46 1.4

DS4 66.06 235.81 912.57

180 seconds to about 660 milliseconds. Such a significant
improvement encourages the adoption of the approach in
large real-world scenarios.

The second test campaign is aimed at evaluating the data
complexity of the approach.

The KB instances generator was adopted to randomly
create the data set DS3 of 500 profiles (each with only 3
technical skills) and to extend it to 1000 and 2000 profiles.
DS4 was analogously generated, starting from 500 profiles,
including a higher average number of technical skills (30
instead of 3). Intuitively, the resulting profile concept com-
ponents number increases (in DS3 components arise up to
11643 for 2000 profiles, while in DS4 to 28177). DS3 has
been also extended to 1000 and 2000 profiles. The execution
time for the two main steps of Core Competence extrac-
tion process are shown in Table 3, w.r.t. DS3 and DS4 and
k = 0.3 × n.

With reference to DS3, the Profile Subsumers Matrix cre-
ation is still the most computationally expensive process.
Conversely, the Core Competence Enumeration execution
time dramatically rises in the presence of significantly com-
plex profiles and consequently, of a huge number of deriving
concept components (see values of tcse referred to DS4

and Fig. 14b). Performed tests suggest that there should
be a critical value for the number of concept components,
after which the most time-consuming phase switches from
the matrix computation to the common subsumers sets
identification.

6 Conclusions

Motivated by the need of efficiently managing large quan-
tities of information in a human resources management
system while still benefiting from novel non-standard rea-
soning services typical of knowledge representation and rea-
soning, we introduced a knowledge compilation approach
in an originally designed relational schema, and devised
solutions to execute inference services—both standard and
non-standard ones—through standard-SQL queries only.

We exploited such services referring to three relevant busi-
ness processes typical of recruitment and human resources
management, presenting them in the framework of the
I.M.P.A.K.T. system. We reported an effective compar-
ison with existing tools and research solutions and showed
the effectiveness of our approach also from a computational
point of view. Implementation of optimization techniques,
such as table partitioning in our PostgreSQL database,
are under development. As expected, first results show an
improvement in the I.M.P.A.K.T. performance (e.g.,
for the skill matching execution over a dataset of 10000
profiles, we obtain a reduction of 30 percent on the retrieval
time). Moreover, we are currently studying the peculiarities
of the proposed design method for database modeling and
management, with the aim of generalizing it to a framework
fully independent from the underlying ontology.

Future work aims at testing further devised strategies
for score calculation and at designing a service for CV
translation from plain text according to our skill ontology.
Moreover, in order to deal with specific business application
requirements, e.g., the need to deploy I.M.P.A.K.T. in
a more scalable environment, we are investigating the possi-
bility of exploiting Big Data technologies for KB modeling
and querying.

Appendix A: Basic description logics

Description Logics are a family of formalisms and reason-
ing services widely employed for knowledge representation,
in a decidable fragment of First Order Logic. We give here
a limited introduction to make this paper self-contained,
referring the interested reader to more comprehensive intro-
ductions [1, Ch.2].

The alphabet of each DL is made up by unary and binary
predicates, known as Concept Names A1, A2, A3, . . . and
Role Names r1, r2, r3, . . ., respectively. Complex Concept
Descriptions—which we denote with the symbols C, D—
are built (recursively) from concept and role names com-
posed by constructors like, for example, conjunction of
concepts A1 � A2, minimum number of role fillers (� nr),
and many others. Intuitively, concepts represent classes of
individuals of the domain of interest, and roles represent
binary relations between them. Each choice of constructors
defines a different DL, and characterizes such DL both in
terms of expressiveness and computational complexity of
reasoning tasks. In fact, it is well established that the more
a DL is expressive, the harder is inferring new knowledge
from its descriptions [1, Ch.3].

The expressiveness of a DL may be also enriched by
the introduction of concrete features f1, f2, f3, . . ., which
are binary predicates whose second argument belongs to
a concrete domain D (e.g., integers, reals, strings, dates).
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Table 4 DLs set of adopted constructors

Constructor name Syntax Semantics SHIN ALE ALC FL0

Top-concept  ΔI x x x x

Bottom-concept ⊥ ∅ x x x x

Full negation ¬C ΔI\CI x x

Atomic negation ¬A ΔI\AI x x x

Conjunction C,D CI ∩ DI x x x x

Disjunction C � D CI ∪ DI x x

Value restriction ∀r.C {x ∈ ΔI |∀y : (x, y) ∈ rI → y ∈ CI} x x x x

Existential restriction ∃r.C {x ∈ ΔI |∃y : (x, y) ∈ rI ∧ y ∈ CI} x x x

At-least restriction � nr {x ∈ ΔI |�{y ∈ ΔI |(x, y) ∈ rI} ≥ n} x

At-most restriction � mr {x ∈ ΔI |�{y ∈ ΔI |(x, y) ∈ rI} ≤ m} x

Concrete feature p(f ) {x ∈ ΔI |∃y : (x, y) ∈ f I ∧ y ∈ pI} SHIN (D) ALE(D) ALC(D) FL0(D)

Each domain comes along its set of unary predicates
p1, p2, p3, . . ., and new classes can be constructed by
requiring that an individual satisfying a predicate—for
instance, a feature years representing years of experience
of an individual, could be used with a predicate =3 to form
the class =3 (years) of individuals having exactly three
years of experience. There is also the possibility of having
n-ary predicates over n concrete domains, but we are not
going to use them here. Given a DL L, its enrichment with
concrete features is usually denoted by L(D).

The semantics of concept descriptions is conveyed
through an Interpretation I = (ΔI , ·I), where ΔI is the
domain of I—a nonempty set—and ·I is an interpretation
function such that, conforming to the above intuition about
concepts and roles,

– ·I maps each concept name A in a set AI ⊆ ΔI

– ·I maps each role name r in a binary relation rI ⊆
ΔI × ΔI

– if concrete features with some domain D are used, ·I
maps each feature name f in a binary relation f I ⊆
ΔI × D, and each predicate p to a subset pI ⊆ D.

The DL constructors we use or mention in this paper, along
with their semantics, are shown in Table 4. In the last four
columns, an “x” in the cell of row c (the constructor) and
column L (the DL) means that c is used in L, except for the
last row that names L with concrete domain D as L(D).

Statements about classes in the domain of interest are
divided into Concept Definitions and Concept Inclusions.
Definitions (denoted by A ≡ C) state—in the form of
a complex concept C—the necessary and sufficient con-
ditions for an individual to belong to the concept A. For
instance, A3 ≡ A1, A2 states that an individual belongs to
A3 if and only if it belongs to both A1 and A2. Inclusions
(denoted by A � C) state in C only the necessary condi-
tions for membership in A. For instance, A4 � A5 states

that an individual belongs to A4 only if it belongs to A5.
Each concept name A can appear on the left-hand side of
at most one of such definitions or inclusions—if any. Con-
cept names are divided into Defined Concepts, appearing
on the left-hand side of some concept definition, and Prim-
itive Concepts, which do not appear on the left-hand side of
any definition (but can appear on the left-hand side of an
inclusion). Intuitively, an individual belongs to a primitive
concept A only if this membership is explicitly stated (we
define later on how this can be done), while membership
can be implicit for defined concepts (and reasoning can be
necessary to derive it).

The set of inclusions and definitions yield a formal rep-
resentation of the intensional knowledge of the domain
of interest, known as TBox in DL systems, and Ontol-
ogy in the generic knowledge representation framework.
TBoxes containing recursive concept definitions are called
cyclic (acyclic otherwise). In this paper we use only acyclic
TBoxes.

An interpretation I is a model for a TBox T if it satisfies
all concept definitions and inclusions in T .

A DL system usually allows one to make statements
about named individuals a1, a2, a3, . . .. This part of a DL-
knowledge base is known as ABox, and statements have one
of the following two forms:

– Concept assertions: C(a) states that an individual a

belongs to the concept C

– Role assertions: r(a, b) states that individual a relates
to the individual b through role r .

An interpretation I assigns an element aI ∈ Δ to each
individual a, and is a model for an ABox A if it satisfies
(aI , bI) ∈ rI for all role assertions r(a, b) ∈ A and aI ∈
CI for all concept assertions C(a) ∈ A.

I.M.P.A.K.T. adopts a CV representation (see Defi-
nition 2) allowing for reasoning only on FL0(D) concepts
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which represent knowledge about our domain. The full
expressiveness of the adopted FL0(D) subset is explained,
with the aid of constructors usage examples, in Table 5.

A.1 Standard inference services

The most important service characterizing reasoning in DL
checks for specificity hierarchies, by determining whether
a concept description is more specific than another one or,
formally, if there is a subsumption relation between them.

Definition 4 (Subsumption) Given two concept descrip-
tions C and D and a TBox T in a DL L, we say that D

subsumes C w.r.t. T if for every model of T , CI ⊂ DI . We
write C �T D, or simply C � D if we assume an empty
TBox.

For example, consider the following concept descrip-
tions, referred to a required task and a personnel profile,
respectively:

– T1 = ∀hasKnowledge.ProgrammingLanguage
� ≥3 (years)

– P1 = ∀hasKnowledge.Java� =5 (years) �
∀hasLevel.ComputerScience

Considering a TBox with the two following
concept inclusions Java � OOP and OOP �
ProgrammingLanguage, knowledge expressed by P1

is more specific than the one required by T1: according to
the previous definition T1 subsumes P1.

Several widely used services may be reduced to sub-
sumption, like concept equivalence and concept satisfiabil-
ity (intuitively, a concept description is satisfiable if it can
be somehow interpreted in the knowledge domain).

A.2 Non-standard inference services

Although very useful in many knowledge management
settings, both subsumption and satisfiability return a
yes/no answer. The first category of services provided by
I.M.P.A.K.T. is instead aimed at returning referral lists
of job candidates, ranked according to their ability to fulfill
the job request initiating the recruiting process. In such a
scenario, both explanation and belief revision turn out to be
useful to cope with cases in which no perfect match exists
between job request and candidates. The process performed
by I.M.P.A.K.T. to return referral lists of candidates
conceptually originates from the extended matchmaking
approach originally introduced in our past research [16],
based on Concept Abduction and Concept Contraction.

Concept Contraction is useful when C � D is unsatisfi-
able in the ontology T , i.e. the task and the profile are not
compatible with each other. In this case, as in a belief revi-
sion process, we want to retract some requirements G (for
Give up) in D, to obtain a new contracted task request K

(for Keep) which is compatible with D. In other words, such
that K � D is satisfiable in T .

Concept Abduction is instead useful when C and D are
satisfiable w.r.t. each other (the task and the profile do not
contain conflicting information) but subsumption does not
hold (i.e. a full match is unavailable). In this case the objec-
tive is hypothesizing some explanation on which are the
causes of this result.

The third I.M.P.A.K.T. service category aims at
determining the strategic competence of a company,
denoted by Core Competence in knowledge management
literature [25]. The objective of the implementation of
services for automatic Core Competence extraction is iden-
tifying a common know-how in a significant portion of

Table 5 The expressiveness of FL0(D) (adopted by I.M.P.A.K.T.) explained with examples

Expression Example Intuitive explanation

Top-concept  whole domain

Bottom-concept ⊥ empty set

Conjunction Java � ∀skillType.Programming knowledge about Java and programming experi-
ence

Value restriction ∀knowsLanguage.English elements of the domain knowing only English as
foreign language

Concrete features =3 (years) elements of the domain endowed with exactly 3
years of working experience

Concept definition EnglishSpeaker ≡
∀knowsLanguage.English �
=3(verbalLevel)

represents someone skilled at English conversa-
tion

Concept inclusion Java � OOP Java knowledge is more specific than Object Ori-
ented Programming knowledge
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company personnel, with a degree of coverage to be set by
the management. To this aim, I.M.P.A.K.T. framework
follows the conceptual line by Colucci et al. [15], based on
Least Common Subsumer (LCS) computation.

Appendix B: Theoretical limits of knowledge
compilation in SQL

The translation into SQL of a problem stated in Description
Logics is subject to some theoretical limitations regarding
efficiency. It is well known [59] that deciding whether a
relational query Q over a database db retrieves an individ-
ual a—a problem that we denote by db |= Q(a) in the
following—is PSPACE-complete in expression complexity
(fixed db, varying Q), and LOGSPACE-complete in data
complexity (fixed Q, varying db). We now analyze the con-
sequences of these facts for the size and complexity of our
translation. We denote by |db| the size of a database, which
is proportional to the number of tuples assuming relations
of bounded arity.

Given a CV C and a profile P expressed in some DL, the
standard and non-standard services offered by our system
imply—as a special case—deciding Subsumption between
C and P , denoted by C � P . Our approach translates:

– a CV C into a database, which we denote v(C), with a
special individual a representing the person having that
CV, and

– a profile P into an SQL query π (P).

Subsumption between C and P holds iff v(C) |= π(P )(a),
that is, iff a is retrieved from the database v(C) by the query
π(P ). Hence, subsumption in a given DL could be solved
by first applying the translation, and then answering the
corresponding query. Rephrasing the complexity results, for
a fixed query π(P )(a), the problem v(C) |= π(P )(a) is
solvable in LOGSPACE considering |v(C)| as input.

Now let C, P be expressed in a DL whose subsump-
tion problem C � P is EXPTIME-complete, such as
SHIN (D), which is equivalent to OWL1-DL. We observe
that C � P iff (C � ¬P) � ⊥, where C � ¬P is a con-
cept which is still in SHIN (D), and the same is true for
every DL which is closed under concept negation. If trans-
formation v(·) could be performed in polynomial time, then
its output v(C � ¬P) has size polynomial in |C � ¬P |.
Since v(C � ¬P) |= π(⊥)(a) can be decided in space log-
arithmic (and hence time polynomial) in |v(C � ¬P)|, then
the EXPTIME-complete problem C � P could be solved in
polynomial time by first transforming C, P into v(C �¬P),
then ⊥ into π(⊥)—a constant since ⊥ is fixed—and then
deciding v(C �¬P) |= π(⊥)(a). The same argument could

be repeated for DLs in which C � ⊥ (concept satisfia-
bility) is a problem in any complexity class a̧bove PTIME,
such as NP, or CO-NP, or PSPACE. We can conclude
with the following theorem, whose proof is in the above
argument.

Theorem 1 Let L be a DL whose subsumption problem is
complete for some complexity class C, and such that either
L is closed under concept negation, or L contains ⊥. If the
transformation v(·) could be computed in polynomial time,
then C ⊆ PTIME.

Recall that PTIME is provably strictly contained in EXP-
TIME, hence the above theorem in this case says—by
contraposition—that v(·) cannot run in polynomial time at
all, e.g., for L = SHIN (D). For C below EXPTIME and
above PTIME, e.g., C = NP, the claim is conditioned to
C ⊆ PTIME, which is considered unlikely.

Regarding the transformation π(·), a similar argument
could be developed. In fact, C � P iff  � (¬C � P),
where ¬C � P is a concept that still belongs to a DL
which is at least as expressive as ALC. So, one could decide
C � P by first transforming  into v()—some constant
database—then transforming ¬C � P into π(¬C � P), and
then decide v() |= π(¬C � P)(a). The latter problem can
be solved in PSPACE with respect to |π(¬C � P)|. If π(·)
could be performed in polynomial time, it would yield a
query π(¬C � P) whose size is polynomial in |¬C � P |.
Overall, C � P would be a problem solvable in PSPACE

also with respect to the size of C and P .

Theorem 2 Let L be a DL whose subsumption problem is
complete for some complexity class C, and such that L is
closed under concept disjunction and negation. If the trans-
formation π(·) could be computed in polynomial time, then
C ⊆ PSPACE.

Hence, for languages like SHIN (D), finding a
polynomial-time transformation π(·) would imply
EXPTIME ⊆ PSPACE, a statement that—although not
yet disproved—is considered very unlikely in complexity
theory.

We conclude that to look for polynomial-time transfor-
mations, one should limit the choice of the DL to those in
which C � P is a problem in PTIME (for polynomial-
time v(·)) or in PSPACE (for polynomial-time π(·)). It
seems unreasonable to use different DLs for curricula and
profiles, so the stronger PTIME-condition dominates the
choice. This motivates our choice of FL0 for expressing
curricula and profiles, since FL0 is one of the DLs having
a polynomial-time subsumption problem.
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Appendix C: Alphabet for profile definition

The complete list of possible conjuncts of a profile P is
reported Table 6.

Notice that for each profile conjunct in which the feature
years is defined, it is mandatory to specify also the feature
lastdate, in order to be aware whether the experience level
is up to date. Moreover, the proposed approach considers
only features of the form =n p in the profile storage phase,
whereas it manages features p in the form {≤n p, ≥n p, =n

p} in the reasoning phase: intuitively a candidate specifying
her level of work experience sets the years to a natural num-
ber, while the management of information in the profiles
may need the whole set of order relations.

Appendix D: Candidate profiles example set

1 - Mario Rossi

– Level: Computer Science Engineering (mark 110), Sec-
ondary School (mark 60), Master Degree

– JobTitle: Database Administrator(4 years), Project
Manager (2 years)

– Industry: Banking (4 years), IT and Telematics Appli-
cations (2 years)

– Knowledge: Cplusplus (5 years), Java (5 years), Visual
Basic(5 years)

– ComplementarySkill: Cooperation (5 years), Leader-
Ship (5 years)

– Language: English (excellent writing, verbal and read-
ing), French (good writing)

2 - Daniela Bianchi

– Level: Computer Science Engineering (mark 110), Sec-
ondary School (mark 60), Bachelor

– JobTitle: Database administrator (4 years), Project
Manager (2 years)

– Industry: Banking (4 years), IT and Telematics Appli-
cations (2 years)

– Knowledge: Cplusplus (2 years), Java (6 years), Visual
Basic (1 years)

– ComplementarySkill: Cooperation (5 years), Leader-
Ship (5 years)

– Language: English (excellent verbal, writing and read-
ing), French (good writing)

3 - Lucio Battista

– Level:Managerial Engineering (mark 104), Secondary
School (mark 60), Master Degree, CCDP

– JobTitle: Database Administrator (4 years), Project
Manager (2 years)

– Industry: Banking (4 years), IT and Telematics Appli-
cations (2 years)

– Knowledge: DBMS (2 years)
– ComplementarySkill: Cooperation (5 years), Leader-

Ship (5 years)
– Language: English (excellent verbal, writing and read-

ing), French (good writing)

4 - Mariangela Porro

– Level: Managerial Engineering (mark 104), Sec-
ondary School (mark 60), Master Degree, Master after
master

– JobTitle: Database Administrator (4 years), Network
computer systems Administrator (4 years)

– Industry: Banking (4 years), IT and Telematics Appli-
cations (2 years)

– Knowledge: DBMS (2 years), Internet Technologies (2
years)

– ComplementarySkill: Learning Strategy (8 years)
– Language: English (good verbal, writing and reading)

5 - Nicola Marco

– Level: Electronics Engineering (mark 104), Bachelor,
Master after Master

Table 6 Skill reference template

Entry point (R0
j ) Category Feature description (DL syntax)

hasLevel Level ∃hasLevel.(Level � (≥,≤, =)nmark)

hasJobTitle JobTitle ∃hasJobT itle.(jobT itle � (≥,≤, =)nyears� =n lastdate)

hasIndustry Industry ∃hasIndustry.(Industry � (≥,≤, =)nyears� =n lastdate)

hasKnowledge Knowledge ∃hasKnowledge.(Knowledge � ∀skillT ype.T ype�
(≥,≤, =)nyears� =n lastdate)

hasComplementarySkill ComplementarySkill ∃hasComplementarySkill.(ComplementarySkill�
(≥,≤, =)nyears� =n lastdate)

knowsLanguage Language ∃knowsLanguage.(Language� =n readingLevel�
=n verbalLevel� =n writingLevel)
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– JobTitle: Database Administrator (2 years), Network
computer systems Administrator (2 years)

– Industry: Banking (4 years), IT and Telematics Appli-
cations (2 years)

– Knowledge: DBMS (5 years), Internet Technologies (5
years)

– ComplementarySkill: Learning Strategy (8 years)
– Language: English (good writing, verbal and reading)

6 - Carla Buono

– Level: Statistics (mark 106), Master Degree, Master
after Master

– JobTitle: Cost Estimator (4 years), Budget Analysts (10
years)

– Industry: Banking (4 years), Business Strategic Man-
agement (2 years), Finance Banking (1 years)

– Knowledge: Sales and Marketing (2 years), Adminis-
tration and Management (4 years), Mathematics (10
years)

– ComplementarySkill: Critical thinking (8 years), moni-
toring (8 years)

– Language: English (excellent writing, verbal and read-
ing knowledge), French (good writing knowledge)

7 - Marcello Cannone

– Level: Managerial Engineering Degree (mark 106)
– JobTitle: Training and Development Manager (2 years)
– Industry: Sales, Banking and Consumer Lending
– Knowledge: Economics and Accounting (4 years),

WorkflowManagement
– ComplementarySkill: Visualization, Spatial orientation,

Verbal abilities
– Language: English, German (excellent writing and

reading knowledge, basic verbal knowledge)

8 - Carmelo Piccolo

– Level: Mechanical Engineering (mark 79)
– JobTitle: Patternmaker Metal and Plastic, Process Plan-

ner (6 years)
– Industry: Engineering Services (14 years), Clothing and

Textile Manufacturing (11 years)
– Knowledge: VBScript, Process Performance Monitor-

ing
– ComplementarySkill: Systems Skills, Complex prob-

lem solving (10 years), Visual Color Discrimination (14
years)

– Language: English (basic writing knowledge), French
(excellent reading knowledge)

9 - Elena Pomarico

– Level: Computer Science Engineering, Secondary
School, Bachelor

– JobTitle: Database Administrator, Project Manager

– Industry: Banking, IT and Telematics Applications
– Knowledge: CplusPlus, Java, Visual Basic
– ComplementarySkill: Cooperation, Leadership
– Language: English (excellent writing, reading and ver-

bal knowledge), French (good writing knowledge)

10 - Domenico De Palo

– Level: Computer Science Engineering (mark 110), Doc-
toral Degree

– JobTitle: Project Manager (4 years), Teachers (4 years),
Database Administrator (4 years)

– Knowledge: OOprogramming (6 years), Artificial intel-
ligence (4 years), Internet technologies (4 years)

– ComplementarySkill: Cooperation (6 years), Complex
problem solving (5 years)

– Language: English (excellent verbal knowledge)
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