دانلود رایگان مقاله انگلیسی پیش بینی زلزله با استفاده از شبکه های عصبی: نتایج و کار آینده - اشپرینگر 2006

عنوان فارسی
پیش بینی زلزله با استفاده از شبکه های عصبی: نتایج و کار آینده
عنوان انگلیسی
Earthquake Forecasting Using Neural Networks: Results and Future Work
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
9
سال انتشار
2006
نشریه
اشپرینگر - Springer
فرمت مقاله انگلیسی
PDF
کد محصول
E6175
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، مهندسی فناوری اطلاعات، مهندسی عمران
گرایش های مرتبط با این مقاله
شبکه های کامپیوتری، هوش مصنوعی، زلزله
مجله
دینامیک غیرخطی - Nonlinear Dynamics
دانشگاه
Centro de Geof´ısica da Universidade de Coimbra - Portugal
کلمات کلیدی
Azores، پیش بینی زلزله، تحلیل فنی مالی، پیش بینی، شبکه های عصبی، پرتغال، لرزه خیزی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract.


In 1994, a new earthquake forecasting method was developed, that integrated in a neural network several forecasting tools that had been originally developed for financial analysis. This method was tested with the seismicity of the Azores, predicting the July, 1998, and the January, 2004, earthquakes, albeit within very wide time and location windows. Work is beginning to integrate physical precursors in the neural network, in order to narrow the forecasting windows.

کار آینده

5. Future Work


A group including researchers from the universities of Coimbra, Porto and Tr´as-os-Montes e Alto Douro (Vila Real) is beginning work on project DESIRE (Dynamic Evaluation of Seismic Risk) this time aimed at seismic forecasting in Continental Portugal. Three stations will be deployed near the three universities and monitor microseismicity, seismic waves’ velocities, water piezometry, ground self-potential, EM piezoelectric emissions and magnetic susceptibility, known earthquake precursors [20, 21, 22]. This area was chosen due both to its moderate seismicity – around 35 events with M ≥ 3.0 per year in the last 30 years, of which 71% had epicentres North of latitude 40◦ – and also because of the locations of the monitoring stations (Figure 4). The collected physical data will be added as input nodes to a neural network that is similar to the one that was described above, together with the pre-processed seismic catalogue data, this time using magnitudes instead of intensities. It is expected that this mixed approach will succeed in narrowing the time forecast window – that is, to achieve the goal of mid- to short-term prediction.


بدون دیدگاه