دانلود رایگان مقاله انگلیسی یادگیری فعال عمیق برای طبقه بندی هسته در تصاویر آسیب شناسی - IEEE 2018

عنوان فارسی
یادگیری فعال عمیق برای طبقه بندی هسته در تصاویر آسیب شناسی
عنوان انگلیسی
Deep Active Learning For Nucleus Classification In Pathology Images
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
4
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
پایگاه
اسکوپوس
کد محصول
E9511
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
هوش مصنوعی
مجله
سمپوزیوم بین المللی در زمینه تصویربرداری بیومدیکال - International Symposium on Biomedical Imaging
دانشگاه
Dept. of Computer Science and Technology - Nanjing University of Aeronautics and Astronautics - Nanjing - China
کلمات کلیدی
یادگیری عمیق، یادگیری فعال، محدودیت های دو طرفه، طبقه بندی هسته سلولی
doi یا شناسه دیجیتال
https://doi.org/10.1109/ISBI.2018.8363554
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

ABSTRACT


The systematic study of nuclei patterns in pathology images is very important for fully charactering the grade of cancerous tissues. Nowadays, with the great advance of deep neural networks (i.e., DNN), intense interest in adopting DNN to distinguish different types of pathology nuclei is widely spread. However, most of the existing methods need to annotate lots of nuclei images in the training stage, and this is not always an option for the labelling cost are high. To address this problem, we propose a novel approach called DAPC (i.e., deep active learning with pairwise constraints) to actively select the most valuable nuclei for annotation. Specifically, we firstly design a novel pairwise-constraint regularized deep convolutional neural network (i.e., CNN) that can simultaneously preserve the distribution of different subjects and optimize the objective criterion of conventional CNN. Then, through the properly designed CNN, we query the most informative nuclei in the unlabelled dataset for human annotation, and the parameters of the designed CNN is subsequently updated by incorporating the newly annotated samples to enhance the CNNs performance incrementally. We evaluate our method on a public available pathology colon dataset, the experimental results show that the proposed method could achieves to a weighted F1-score of 79.2% by only annotating 60% nuclei in the training set, which is better than the comparing methods.

نتیجه گیری

4. CONCLUSION


In this paper, we propose an interactive cell nuclei classification method (i.e., DAPC). The best merit of our approach is its capability of reducing the workload of expert for annotation. The experimental results on a public available colon dataset demonstrate that our method can save experts 40% time for annotation while still can achieve better classification performance when comparing with several existing methods.


بدون دیدگاه