منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله تبدیل یک مدل CAD به یک سطح زیربخش غیر یکنواخت

عنوان فارسی
تبدیل یک مدل CAD به یک سطح زیربخش غیر یکنواخت
عنوان انگلیسی
Converting a CAD model into a non-uniform subdivision surface
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
19
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E523
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
نرم افزار
مجله
طراحی هندسی به کمک کامپیوتر - Computer Aided Geometric Design
دانشگاه
آزمایشگاه کامپیوتر، دانشگاه کمبریج، بریتانیا
کلمات کلیدی
مدل CAD ،NURBS کمرنگ، زیربخش غیر یکنواخت
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


CAD models generally consist of multiple NURBS patches, both trimmed and untrimmed. There is a long-standing challenge that trimmed NURBS patches cause unavoidable gaps in the model. We address this by converting multiple NURBS patches to a single untrimmed NURBS-compatible subdivision surface in a three stage process. First, for each patch, we generate in domain space a quadrangulation that follows boundary edges of the patch and respects the knot spacings along edges. Second, the control points of the corresponding subdivision patch are computed in model space. Third, we merge the subdivision patches across their common boundaries to create a single subdivision surface. The converted model is gap-free and can maintain inter-patch continuity up to C2.

نتیجه گیری

8. Conclusion


We present a novel framework to convert a trimmed NURBS model, which consists of several patches with inter-patch gaps, to a single gap-free non-uniform subdivision surface. The connectivity of the target subdivision base mesh is computed via quad partition in domain space. The control point positions are then obtained by solving a fitting problem based on the limit stencils of the subdivision scheme and the boundary conditions. We further introduce the Pixar sharp edge rules to the non-uniform subdivision to handle concave corners in trimming. The inter-patch merging (C0 or G1) is automatic. For some cases, C1 and C2 can be achieved. The approximation error is controllable via further refinements in the connectivity construction. Although this paper deals with cubic degree, the framework can be extended to support higher degrees, using Cashman’s subdivision scheme.


بدون دیدگاه