
Computer Aided Geometric Design 48 (2016) 17–35
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Converting a CAD model into a non-uniform subdivision
surface

Jingjing Shen a,∗, Jiří Kosinka a,b, Malcolm Sabin c, Neil Dodgson a,d

a Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom
b Johann Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands
c Numerical Geometry Ltd., 19 John Amner Close, Ely, Cambridge CB6 1DT, United Kingdom
d Faculty of Engineering, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 April 2016
Received in revised form 14 July 2016
Accepted 19 July 2016
Available online 29 July 2016

Keywords:
CAD model
Trimmed NURBS
Non-uniform subdivision

CAD models generally consist of multiple NURBS patches, both trimmed and untrimmed.
There is a long-standing challenge that trimmed NURBS patches cause unavoidable gaps in
the model. We address this by converting multiple NURBS patches to a single untrimmed
NURBS-compatible subdivision surface in a three stage process. First, for each patch, we
generate in domain space a quadrangulation that follows boundary edges of the patch and
respects the knot spacings along edges. Second, the control points of the corresponding
subdivision patch are computed in model space. Third, we merge the subdivision patches
across their common boundaries to create a single subdivision surface. The converted
model is gap-free and can maintain inter-patch continuity up to C2.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

NURBS are the standard representation for Computer-Aided Design (CAD). Because of their restriction to the regular grid 
structure, a CAD model typically consists of a collection of NURBS patches, some of which are trimmed. These surfaces 
are then stitched together with certain boundary management to represent a smooth shape with arbitrary topology. The 
trimming and stitching operations introduce unavoidable gaps (Fig. 1a) between adjacent patches (Sederberg et al., 2008). 
By contrast, subdivision, the de facto standard for computer animation (DeRose et al., 1998), is able to model a smooth 
shape of arbitrary topology using just a single control mesh, thus providing a gap-free representation. A key challenge of 
using subdivision in the CAD industry is that traditional subdivision methods (Catmull–Clark, Loop) are incompatible with 
NURBS, but recent advances (Cashman et al., 2009) have produced NURBS-compatible subdivision methods that do have the 
required expressive power.

Our method converts a CAD model into a single control mesh for a gap-free subdivision surface. We assume the model 
is given in a B-rep topology. Each B-rep face corresponds to a (trimmed) bi-cubic NURBS patch, and each B-rep edge 
corresponds to a (trimming) loop represented as a set of cubic NURBS curves.

Our target representation is the NURBS-compatible subdivision of Cashman et al. (2009), because it admits non-uniform 
knot spacings, which allows us to match exactly any untrimmed bi-cubic NURBS patch and patch edges represented by 
general cubic B-splines. Catmull–Clark subdivision is a special uniform case of this scheme.

* Corresponding author.
E-mail address: js2036@cam.ac.uk (J. Shen).
http://dx.doi.org/10.1016/j.cagd.2016.07.003
0167-8396/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cagd.2016.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:js2036@cam.ac.uk
http://dx.doi.org/10.1016/j.cagd.2016.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2016.07.003&domain=pdf


18 J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35
Fig. 1. (a) A model with trimmed NURBS patches. There is a gap between two of the patches owing to the unavoidable approximation in trimming. 
(b) Converting the NURBS patches to a single Catmull–Clark subdivision surface produces a dense control mesh. (c) Converting to a single non-uniform 
subdivision surface produces a less dense control mesh and a better approximation to the original NURBS surface than is possible with Catmull–Clark. In 
this case, the join between patches can be either a hard C0 crease or a smooth C2 join. The left half of the teapot body and all of the spout (other than 
the C2 blend to the body) are preserved exactly.

Fig. 2. Converting a single trimmed NURBS patch to an untrimmed non-uniform subdivision patch. (a) Domain space showing knot lines (black) and oriented 
trimming curves (red). (b) Model space showing the rectangular control mesh and the trimming curves (orange) which form the boundary of the target 
subdivision surface. (c) The partitioning in domain space, giving a non-uniformly spaced quadrilateral mesh. (d) The final control mesh and non-uniform 
subdivision surface in model space. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

The three stages and contributions of our method are:

1. Starting from a coarse quad layout in the trimmed domain of the NURBS patch, we construct a quadrilateral mesh 
topology with knot intervals associated with mesh edges (required by the non-uniform subdivision scheme) while 
keeping the input boundary curves unchanged (Section 3).

2. Using the mesh topology from Stage 1, we compute control point positions in that mesh (Section 4). We investigate 
how to compute limit stencils for the cubic, non-uniform Cashman scheme. In addition, to make smooth joins between 
patches easy, we apply Bézier edge conditions across the boundary (with convex corners only) and extend to the 
non-uniform case the constraints on control points for tangential continuity across the boundary (Shen et al., 2014). We 
extend Pixar sharp rules (DeRose et al., 1998) to non-uniform subdivision to deal with concave corners.

3. Given the meshes (created in Stage 2) for each patch in the model, we automatically merge them into a single subdivi-
sion mesh (Section 5). To ensure that this is possible, in Stage 1, for each shared edge we ensure that the same boundary 
curve is used and maintained on both sides and, in Stage 2, we use the preserved model-space boundary curves as the 
boundary of the target subdivision surface (in the limit case). This gives a gap-free join because the adjacent patches 
always share the same curve.

Before describing these, we cover background and related work.

2. Background and related work

Our input is a surface model comprising several trimmed bi-cubic NURBS patches with a B-rep topology. Fig. 3 illustrates 
our notation. NURBS patches N1 and N2 share the B-rep edge γ , whose geometry is given by the model-space curve γ b , 
called the b-curve, represented as a cubic NURBS curve.

The trimming loops for the patches are specified in parameter space and consist of several individual cubic NURBS 
curves called p-curves, denoted by γ p . In Fig. 3, γ b corresponds to γ p

− on N1 and to γ p
+ on N2. If the trimming is 

introduced by intersecting two NURBS patches, this intersection is not rational, in general (Sederberg et al., 2008), and thus 
N1(γ

p
−) �= γ b �= N2(γ

p
+) and none of these curves is identical to the true intersection curve (shown in grey in Fig. 3). This 

is the source of the unavoidable gaps.
The whole set of edge curves associated with a shared γ are denoted as 

〈
γ b, γ

p
− , γ

p
+

〉
. We assume that all the three 

curves associated with any γ are given in the same parametrisation (Shen et al., 2014).



J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35 19
Fig. 3. The situation at the shared B-rep edge of two NURBS patches N1 and N2. Their true intersection curve is shown in grey. The embedding into model 
space of the B-rep edge γ is denoted γ b (dotted) and called the b-curve. The trimming edges in parameter spaces, the p-curves, of the patches are denoted 
γ

p
− and γ p

+ .

As illustrated in Fig. 2a–b, patch trimming is done using oriented p-curves (red), which identify the region that are 
skipped during evaluation. The images (orange) of these p-curves on the surface either produce or approximate the desired 
boundary there.

Gaps are not acceptable in many applications (e.g., Computer-Aided Engineering, Finite Element Analysis) and so addi-
tional boundary management has to be enforced to give the desired inter-patch continuity.

Our aim is to replace the NURBS geometry with a subdivision surface that exactly contains the b-curves, thus rendering 
the entire configuration gap-free. The benefit of using Cashman’s non-uniform subdivision (Cashman et al., 2009) is that 
untrimmed patches are kept exactly the same and so the approximation error is confined to trimmed patches and, in some 
cases, to smaller regions around the trimming curves. In addition, our subdivision mesh can be much coarser (Fig. 1) than 
is possible with a uniform subdivision mesh (Shen et al., 2014), which is an advantage for later processing.

The potential benefits of solving this problem are that it (1) produces gap-free models for the CAD/CAE industry, (2) en-
ables the subdivision community to directly use all existing NURBS models, and (3) provides a conversion in which the user 
can edit the trimmed model directly without re-trimming. Because Catmull–Clark is a special case of our method, we are 
also able to provide Catmull–Clark models for those wanting to work with that uniform mechanism.

2.1. Methods to make trimmed NURBS gap-free

The seminal work in this area is undoubtedly that of Sederberg et al. (2008). Unfortunately their paper can leave the 
impression that the key to what they do is the T-junction mechanism. In fact T-junctions alone only address mesh density. 
To get the orientation right so that mesh lines run parallel near boundaries, it needs extraordinary vertices (EVs), which are 
present in their meshes. The major difference between their result meshes and ours is that their meshes have many EVs 
near the boundary. This is a limitation because the mesh quality near the boundary is crucial for numerical analyses. In 
contrast, our framework generates smooth alignment near the boundary, creates a relatively smaller number of EVs for the 
trimmed shape, and ensures that the EVs are not ‘unnecessarily’ close to the boundary.

Our work can be viewed as a significant generalisation of the work by Shen et al. (2014). They present a method to 
convert a single trimmed NURBS patch to a Catmull–Clark (uniform) subdivision surface. However, they do not deal with the 
practical case of multiple trimmed patches. Even though Shen et al. (2014) mention that a gap-free join can be achieved 
provided that the same boundary curve is used during the conversion of the adjacent patches, it is non-trivial to ensure that 
the same number of control points are used to uniformly re-approximate the shared boundary when the conversion of each 
patch is done independently. Also, owing to their use of uniform subdivision, their method re-approximates any non-uniform 
patches/edge curves, and creates meshes that can be unnecessarily dense. Furthermore, their method is restricted to trims 
that have only convex corners, while concave corners exist in common models.

In contrast, our new approach converts a group of bi-cubic NURBS patches (either trimmed or not) with a B-rep topology 
to a single untrimmed non-uniform subdivision surface and handles general trims with concave corners.

2.2. NURBS-compatible subdivision

Subdivision can handle arbitrary topology, while NURBS implementations have the flexibility of higher degrees and non-
uniformity. To obtain the advantages of both representations, various non-uniform subdivision schemes have been presented 
for degree 2 and degree 3 (Müller et al., 2006, 2010; Sederberg et al., 1998, 2003). They extend the refinement of NURBS 
to arbitrary topology. NURBS-like knot intervals are assigned to the corresponding vertices (even degrees) or edges (odd de-
grees) of the subdivision mesh. Going beyond degree 3, Cashman et al. (2009) proposed a non-uniform subdivision scheme 
with arbitrarily high degree.



20 J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35
We use the cubic case of Cashman’s subdivision scheme. It provides bounded curvature solutions at EVs. It requires that 
the control mesh contains only quadrilateral faces and each quadrilateral face has equal knot interval on opposite edges (as 
is the case with NURBS). Therefore, knot intervals are defined for whole strips of quadrilateral faces rather than for a single 
edge.

2.3. Quad layout

We construct the topology of the target non-uniform subdivision mesh and assign knot intervals to mesh edges in the 
domain space of a trimmed patch. This first requires a coarse boundary-aligned quad partition of the 2D domain (bounded 
by p-curves).

As shown in Shen et al. (2014), an intuitive way to create this quad layout is first to compute a smooth cross field with 
directional constraints along the boundary (Bommes et al., 2009) and then trace streamlines from the singularities of this 
field (Alliez et al., 2003; Palacios and Zhang, 2010). Recently, approaches based on the general frame field, an anisotropic and 
non-orthogonal extension of cross field, have been proposed (Diamanti et al., 2014; Jiang et al., 2015) and approaches for 
robust tracing have been introduced (Myles et al., 2014; Ray and Sokolov, 2014). In our work, we follow a similar procedure 
to Shen et al. (2014), but replace the cross field with the frame field proposed by Diamanti (2014) for better alignment 
along boundary with non-90◦ corners. See Appendix E for details.

We emphasise that our framework treats the process for a coarse quad layout as a black box. Any method that produces 
a reasonable coarse quad mesh would be acceptable here. Alternatives include pattern-based quad meshing methods (Peng 
et al., 2014; Takayama et al., 2014) and the state of the art in reliable quad meshing by Bommes et al. (2013) and Campen 
et al. (2012, 2014). Note that the applications of these methods focus on producing uniformly spaced quad meshes, and it 
is not straightforward to use them in the non-uniform setting. We leave to future work the challenge of extending such 
algorithms to the non-uniform case.

2.4. Surface fitting

Our Stage 2 requires a form of surface fitting. Methods for fitting B-spline surfaces and Catmull–Clark subdivision 
surfaces have both been well explored. Weiss et al. (2002) provide a detailed review for least squares B-spline surface 
fitting techniques. Algorithms include optimisation of parameterisation, efficient fitting with tight tolerance and smooth-
ness functions (Floater, 2000; Deng and Lin, 2014). Halstead et al. (1993) introduced an efficient interpolation method for 
Catmull–Clark subdivision surface based on limit stencils. To improve the surface quality, they used a fairness term based 
on membrane and thin plate energy.

However, the interpolation method for non-uniform subdivision surfaces remains unexplored. The main challenge is to 
obtain the limit stencils of Cashman’s scheme. Our new method is described in Section 4.

3. Topology construction of a non-uniform subdivision mesh

This section describes Stage 1 of our method: topology construction in the parameter space. This is done across patches 
with the constraint that adjacent patches have their shared edge curves preserved. The preserved b-curve will become the 
boundary of the target subdivision surface. For clarity, we explain this procedure in one trimmed patch.

The input is a single trimmed bi-cubic NURBS patch, with its bounding edges included in the B-rep structure. If γ is an 
open edge, its edge curves are 

〈
γ b, γ p

〉
, and if shared, then 

〈
γ b, γ

p
− , γ

p
+

〉
. These edge curves share the same parametrisa-

tion (Shen et al., 2014), meaning that each γ is associated with a unique knot vector.
The output from this procedure is a quad mesh Q in the trimmed domain, with knot intervals Ii assigned to mesh 

edges ei . The boundary edges of Q constitute control polygon edges for γp . The image of the mesh point in Q on the 
NURBS patch will be used as the limit position of the corresponding control point later in our subdivision surface fitting 
procedure.

The process has four sub-stages (Fig. 4):

1. Create a coarse quad layout in the trimmed domain using the process outlined in Section 2.3 and detailed in Appendix E. 
The method that we have implemented produces good results, but alternative methods could be used, without changing 
the subsequent steps.

2. Allocate knot intervals to the mesh edges in the quad layout (Section 3.1).
3. Refine the layout in order to maintain the boundary curves (Section 3.2).
4. Smooth the partition to improve the quality of the result, giving the mesh Q (Section 3.3).

3.1. Quad layout with knot intervals

Every edge e in the quad layout must be associated with a knot interval. There are two conditions on knot interval values.



J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35 21
Fig. 4. The topology construction. (a) Initial quad layout with EV3 (an extraordinary vertex of valence 3) shown in blue dots, tracing rays shown in green 
segments and boundary partitioning nodes in red dots. (b) Edges across a strip of quads are shown in the same colour and they have the same knot 
interval. (c) After fixing the edge knot intervals (Section 3.1), the boundary partitioning nodes are moved to satisfy the ratios of the knot intervals. The 
black squares on the boundary in (c–e) indicate the knot spacings of the input boundary curves. (d) In order to preserve the curves, the quad layout is 
refined to include these spacings. Narrow intervals are snapped. (e) After 5 smoothing steps. (For interpretation of the references to colour in this figure, 
the reader is referred to the web version of this article.)

• The chosen non-uniform subdivision scheme (Cashman et al., 2009) requires that all the edges, e, that lie across any 
given strip of quads must have the same knot interval. For example, in Fig. 4b, edges in the same colour share the same 
knot interval.

• Even though we are restricted to preserve the B-rep edge curve, we still have the freedom of scaling its knot vector. 
The condition is that for a shared γ , its associated γ p

− and γ p
+ are scaled with the same magnitude, so that 

〈
γ b, γ

p
− , γ

p
+

〉
still have the same parametrisation.

• The knot interval values must be positive.

Each boundary piece (separated by corners) is a p-curve γ p that corresponds to a B-rep edge γ , see Fig. 4a. We begin 
the process by calculating appropriate knot intervals Ii for boundary partitioning edges ei . The knot intervals of these edges 
(e.g. e0 to e5) indicate the scaled parametrisation of the curve (e.g., γ p

1 ).
Note that the above conditions alone provide an under-determined system (if a feasible solution exists) because the total 

knot interval on each B-rep edge is free to scale. Thus, we choose to solve this problem as an optimisation problem, and 
the objective is to respect the initial partition as much as possible, which means to minimise the sliding of the boundary 
partitioning nodes along their p-curves, see red squares in Fig. 4a–c.

The knot intervals Ii , collected into I, of boundary edges ei are computed by solving a constrained linear programming 
problem. The inputs are the lengths, li , of the edges ei in the layout. We use � to denote the collection of adjacent edge 
pairs (ei, e j) on each boundary piece, and hij the length of the interior edge that meets the shared vertex of ei and e j . The 
objective function is formulated as

F (I) =
∑

(
ei ,e j

)∈�

wij

∣∣∣∣ Ii

li
− I j

l j

∣∣∣∣, (1)

subject to three conditions:

1. for boundary partitioning edges, ei and e j lying across the same quad strip: Ii = I j ;
2. for edges ek on a shared γ with fixed total knot interval Î: 

∑
k Ik = Î;

3. Ii > 0.

The weight wij =
√

l2i + l2j /h2
i j is ad hoc for two purposes: scaling the length will not affect the result and to prevent 

excessive pulling near boundary.
We solve the problem using the open source library lpsolve (Berkelaar et al., 2004). The size of the problem depends on 

the number of strips and shared B-rep edges in the coarse quad layouts. In our experiments, the number of variables and 
the number of constraints vary in the range of 10–80.

When grouping the conditions for multiple adjacent patches together for a single system in Condition 2, Î is replaced 
with 

∑
m Im , where Im denotes the knot intervals in the partition on the other side of its γ . Across multiple patches, the 

above system could be, in principle, over-constrained; see the discussion in Section 7. However, we have not encountered 
the over-constrained problem in our experiments on CAD models.



22 J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35
Fig. 5. (a) After partition, the adjacent patches have different set of knots along the shared boundary curve (blue). The original and the newly added knots 
are marked in black and red squares, respectively. (b) Our approach matches the knot spacings by propagating knots from patch to patch and across patches, 
see the dashed knot lines. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

Fig. 6. Smoothing method illustration: qi is updated to q′
i .

After fixing the knot interval for boundary edges, all edges across the strip it belongs to share the same interval. The 
knot interval for a looping strip (i.e., a strip that contains no boundary edges) is then set proportionally to its average edge 
length, based on the fixed neighbouring edges along this strip.

3.2. Refinement

For each γ , the total knot interval allocated from the above process might be different from its original value. Therefore, 
we scale its original knot vector to this new total interval. Now we need to refine the quad layout so that:

• The edge curves of γ are preserved. Therefore, a new knot lines should be introduced for any original knot (black 
squares in Fig. 4c), associated with γ , that is not already a knot in the quad mesh.

• For a shared boundary γ , the refined parameterisations of its two p-curves are identical. When forming the quad layout, 
new knots may be introduced (red squares in Fig. 4a and Fig. 5a). Since different sets of new knots might be inserted 
in the p-curves on the two sides, we need to map these knots from patch to patch and across the patches. Here, patch 
means the domain-space partition of the patch. See the dashed lines in Fig. 5b.

The refinement is implemented as an iterative process: propagating across the boundary into the partition on the other 
side (Fig. 5), and within each partition, matching the knots (the spacings) on the start and end edge of each strip (Fig. 4d). 
On an all-quad layout with valid knot intervals, the matching and propagation will terminate (either by hitting an open 
boundary or by coming back to the start point). This process will take as many iterations as there are patches in the 
longest loop. Note that since the number of knots after the refinement phrase could grow significantly, a snapping phase 
(explained in the next paragraph) is important in order to produce a relatively sparser control mesh. After all knot intervals 
are mapped across the partitions, each refining knot line is added by interpolation along the edge strip it belongs to (black 
lines in Fig. 4d).

Snapping knots. Inserting new knots in the refinement step can lead to narrow intervals, which are undesirable because 
they introduce many unnecessary control points in the converted subdivision mesh. To avoid narrow intervals, we snap the 
knots when their intervals are smaller than a given threshold (set to 5% of the maximum knot interval in partitions in our 
examples). The input boundary curve is slightly modified if its original knot is moved. However, this small movement has 
only a small, bounded, effect on the shape of the curve (Imre and Hoffmann, 2001) and does not affect our ability to make 
a gap-free surface (Section 5). Fig. 4d shows the refined partition after snapping.

3.3. Smoothing the quad partition

The images of qi (i.e., the points in the refined domain-space partition Q) on the NURBS patch will be used as the 
limit positions in the later subdivision surface fitting procedure. In order to get a smooth distribution of the limit points, 
the partition is further smoothed based on the allocated knot spacings (Fig. 4d–e). We apply a simple smoothing step 
iteratively, which extends the uniform Laplacian smoothing algorithm (Fig. 6). For each point qi , find its edge-connected 
neighbours {ek} , k = 1, ..., n, with (connecting) edge knot intervals {Ik} , k = 1, ..., n, and then set

q′
i = (1 − α)qi + αC

(
ẽ1, .., ẽn

)
, (2)



J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35 23
Fig. 7. Aircraft wing model. The inner trimming loop of the fuselage has a concave corner. Pixar sharp rules are applied on that shared edge during 
subdivision. The converted subdivision mesh and surface are shown on the right.

Fig. 8. Limiting the approximated area to the local neighbourhood of the trimming curve. This example is for the teapot body shown in Fig. 1c. (For 
interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

where

ẽk = Imin

Ik
(ek − qi) + qi,

C 
(
ẽ1, .., ẽn

)
is the centroid of ẽ1, .., ̃en , α is the average weight (set to 0.25 in our examples), and Imin is the minimum knot 

interval around qi . The partition becomes smooth quickly, typically after 3–5 steps (Fig. 4e).

3.4. Limiting the area approximated (optional)

By reconstructing the knot lines in the whole bounded domain, the approximation error of the conversion is on the 
entire trimmed surface. For patches where trimming is performed only in a small region of the patch, we can modify the 
method to limit the approximation process to a certain neighbourhood of the trimmed part. This is done by performing 
the quad partition in a local rectangular region. When a new knot is inserted into its local boundary (black box in Fig. 8, 
corresponding to the hole in the teapot body), it is mapped to the original boundary. The NURBS patch is then refined 
accordingly by knot insertion (dashed lines in Fig. 8). This leaves the blue shaded region unchanged and the limit surface of 
these parts matches the input NURBS exactly. The resulting subdivision mesh is shown in Fig. 1c with the error plot shown 
in Fig. 13b.

4. Computing control point locations

Halstead et al. (1993) and Shen et al. (2014) addressed the problem of computing control points for the Catmull–Clark 
case by using the subdivision limit stencils with certain boundary constraints (Shen et al., 2014). The challenge for the 
non-uniform case is that the limit stencils required are not available for control points inside the support regions of EVs. 
We first show how we get limit stencils for these points using nodal functions (Peters and Wu, 2006), and then explain the 
surface fitting with the boundary constraints.

Our quad partition algorithm generates a quad mesh, Q, in domain space, which maps to a subdivision control mesh, M, 
that defines a subdivision surface S , in model space. M has similar mesh topology to Q, depending on the end-conditions 
applied at the boundary, see Fig. 9 and Section 4.2. In domain space, we know the parametric locations of the vertices, qi , of 
Q and the knot intervals, I j , of the edges e j in Q. Evaluating qi on the input NURBS patch gives the corresponding points 
in model space, li . We need to use these to calculate the locations of the vertices of the control points, pi , in M.



24 J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35
4.1. Limit stencils

The limit stencil formulates the surface point li as a linear combination of the corresponding control point pi and its 
one-ring neighbours N1(pi) =

{
p j

}
, j = 1, . . . , J . For non-uniform subdivision, the weights are decided by the knot intervals 

around qi in Q. Note that this is for our cubic case; higher degrees require larger neighbourhoods.
Points in regular regions: For points that are out of the support regions of EVs, since their local limit surfaces are just 

the tensor products of cubic B-splines, the limit stencil is obtained by applying the Cox–de Boor algorithm in each direction.
Points in one-ring neighbourhood of EVs: Because a selective knot insertion process is performed in the first few steps 

of Cashman’s scheme (Cashman et al., 2009), e.g., large knot intervals are subdivided first, it is difficult to directly build a 
subdivision matrix for these steps.

One option would be to further refine the domain partition so that no selective knot insertions are required during 
subdivision. This, however, increases the density of the mesh. Instead, we use the approach of nodal functions (Peters and 
Wu, 2006), which are the limit, under subdivision, of associating the value one with a single control point and zero with all 
the others.

We use the following notations.

• The collection of EVs: X = {xi}, i = 1, . . . , K , where K is the number of EVs.

• The union of the one-ring neighbours of all EVs: R =
{

pr
j ∈ N1(X)

}
, j = 1, . . . , K1, referred to as receivers.

• The union of the two-ring neighbours of EVs and EV themselves: C = {
pc

k ∈ {
N2(X), X

}}
, j = 1, . . . , K2, referred to as 

contributors.

The limit stencils for points in R are obtained after repeating the following process for each contributor pc
k ∈ C (total 

number K2):

(1) set pc
k with value one and all others zero;

(2) perform the initial selective subdivision steps (plus one step of uniform subdivision if necessary) to isolate all receivers 
R from EVs, which updates pr

j to p̄r
j ;

(3) because p̄r
j is in regular regions now, apply the Cox–de Boor algorithm to get its limit value, denoted as w jk =

〈
pr

j,pc
k

〉
, 

which is the contribution of pc
k to pr

j in the limit case.

The limit stencil of pr
j is the collection of the contributions w jk it received from the contributors in its one-ring neigh-

bourhood, i.e., pc
k ∈

{
N1(pr

j),pr
j

}
.

Note that because the selective subdivision steps depend only on the knot interval configurations, the above process can 
be sped up by using a local identity matrix for the contributors as in Stam’s method (Stam, 1998), instead of using a single 
unit value.

EVs: Because Cashman’s scheme keeps a uniform knot configuration around EVs during subdivision, the limit stencils for 
the EVs can be obtained by first following the above steps (1) and (2), and then applying standard approaches for stationary 
schemes (Peters and Reif, 2008). Due to the bounded curvature solutions offered by Cashman’s scheme, the limit stencils 
for the cubic case are different from those of Catmull–Clark subdivision. In our case, we need limit stencils only for degree 
3 and valences 3 and 5, which are detailed in Appendix D.

4.2. Boundary

The limit stencils described above apply only on interior points. The boundary control points and the points next to the 
boundary are constrained differently depending on the end-conditions applied at the boundary.

End-conditions at the boundary. At the boundary, both Sederberg et al. (2008) and Shen et al. (2014) used Bézier edge condi-
tions, i.e., multiple knot lines (with full multiplicity) running along the boundary. It has the advantages that (a) the boundary 
curves of the surface are defined by the boundary control points, and (b) the merging of adjacent patches with higher con-
tinuity can be easily achieved by knot removal, i.e., removing these multiple knot lines along the shared boundary.

However, while it works well for situations where the boundary has convex corners only, it causes problem when the 
boundary of a patch has a concave corner (the examples in Fig. 7 and Fig. 16). Applying Bézier edge conditions here would 
cause multiple knot lines running into the interior of the patch, potentially causing loss of derivative continuity due to 
numerical rounding or subsequent editing. We therefore apply a version of Pixar sharp edge rules (DeRose et al., 1998)
generalised to NURBS-compatible subdivision at edges ending in concave corners, see Appendices A and B for details.

As illustrated in Fig. 9, M has the same mesh connectivity as Q, with the exception that along any boundary where 
Bézier edge conditions are applied, there is one extra layer of control points just inside the boundary in M because of the 
existence of multiple knot lines. This extra layer does not change the overall topology of the output manifold.



J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35 25
Fig. 9. Control mesh topology with two types of edge conditions. (a) The knot lines (green) in domain partition with boundary marked in blue. (b) Control 
mesh with Bézier edge conditions across the boundary. The boundary control points are shown in blue dots. One extra layer of control points, i.e., the 
yellow ones, are required because of the multiple knot lines along the boundary implied by Bézier edge conditions. (c) Control mesh with Pixar sharp edge 
rules across the boundary. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The subdivision meshes calculated by (a) Invert: directly inverting the square linear system of Eq. (3), (b) LSQ_1: least squares fitting with 2 × 2
samples per face (of Qreg ) and (c) LSQ_2: 20 × 20 samples per face, and (d) least squares fitting with 2 × 2 samples per face and with fairing. Their error 
plots are shown in (e–f) with the same scale, measured by sampling the distance of the output subdivision limit surface to the input NURBS surface (with 
number of samples over 30K and distance values scaled by the bounding box diagonal). This trimmed patch is remeshed and approximated within the 
entire domain. These result control meshes have the same topology: #V = 235, #F = 200.

Boundary constraints. The control points on the boundary are fixed as the points of the control polygons of the b-curves (after 
inserting new knots introduced during partitioning). The control points in the first row inside the boundary are fixed according to 
the first derivative information. We extended the boundary conditions, derived by Shen et al. (2014, Section 5.3), to support 
non-uniform knot intervals and generalised Pixar creases, see Appendix B for details.

4.3. Interior control points

We first tried to compute the rest of the interior control points from a square linear system built from the limit stencils 
of the subdivision scheme:

L = MP, (3)

where L and P are the vectors of surface samples li and control points pi , respectively. The ith row in M is the limit stencil 
associated with pi .

However, the control net computed by directly inverting the square linear system in Eq. (3) tends to be less fair than we 
would like (see Fig. 10a).

As an option to improve the smoothness of the final control mesh, we provide a least squares method with more samples 
and a fairing term (Floater, 2000; Halstead et al., 1993). We use Qreg to denote the regular region that contains all faces of 
Q that are not incident with an EV. In our case, the local target subdivision surface corresponding to a quadrilateral face 
freg in Qreg can be viewed as a small NURBS patch. Therefore, we can write the thin-plate energy on these local subdivision 
surfaces in terms of their surrounding control points.

Our increased set of samples S consists of all vertices qi of the quad mesh, Q, and additional n × n interior points, 
uniformly spread via bilinear interpolation, in each (quadrilateral) face freg . Our objective function is

E(P) =
∑
ˆ

∥∥S(q̂k) −N (q̂k)
∥∥2 + λ

∑
X∈Q

ε(X ) (4)

qk∈S reg



26 J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35
Fig. 11. Wheel arch. The input model has two trimmed patches and an untrimmed blend surface in-between. The converted subdivision surface achieves 
(approximate) G1 merging in the lower part.

with ε(X ) =
Ih∫

0

I v∫
0

‖Xuu‖2 + 2‖Xuv‖2 + ‖Xv v‖2 dudv, (5)

where N is the input NURBS patch being approximated, ε(·) is the standard thin-plate energy of a NURBS surface, X is a 
local part of the target subdivision surface S , whose domain corresponds to a face freg in the regular region Qreg ; Ih, I v are 
the knot intervals associated with freg in each direction. All knot intervals are kept fixed, only control points pi are solved 
for by minimising E(P). The λ value is chosen as suggested in Floater (2000). The values of S(q̂k) are computed using either 
limit stencils (if it corresponds to a control point) or the Cox–de Boor algorithm (if it corresponds to a sample point in freg ), 
as explained in Section 4.1.

Our fairing term sums up the integration over the regular region of the subdivision surface, S|Qreg . The derivatives of 
the local subdivision surfaces are measured exactly (de Boor, 1972) and the integrations are done via Gaussian Quadra-
ture (Vermeulen et al., 1992; Floater, 2000).

Fig. 10 compares the fitting results of a trimmed teapot body patch using four options. The resulting control mesh 
using least squares with 2 × 2 samples per face and fairing is fairer. The second row shows the corresponding error plots 
evaluated as described in Section 6.2. There is a tradeoff between the approximation error and the smoothness of the control 
mesh. As shown in (d) and (h), least squares fitting with fairing (Eq. 4) results in smoother control mesh but increases the 
approximation error.

5. Merging subdivision patches

We now merge the subdivision meshes computed in the surface fitting step. We consider joins along common edges and 
what further needs to be done at corners where more than two patches meet.

5.1. Two patches meeting at a common edge γ

There are three ways to merge two patches at a common edge.
C0 join (gap-free): This is straightforward and is sufficient when the edge γ is a sharp one. Since the same model space 

curve is seen from both sides, the refined parameterisations are identical on both sides (Section 3.1), and both subdivision 
patches use this curve as boundary (Section 4), our process automatically gives a C0 join.

G1 join with an untrimmed blend: The tangent planes along the adjoining boundary on the blend side are used to 
compute the control points in the first row next to the boundary on the trimmed patch (see Appendix C for details). The 
result is G1 at those shared control points. This is also the typical way that NURBS modelling systems (e.g. Rhinoceros, 2014) 
approximate G1. The lower part of the wheel arch (Fig. 11) achieves this type of G1 merging between the trimmed patch 
and the blend.

C1 and C2 join: If the adjoining boundary curve is a closed curve or the end corners of this curve in the two patches add 
to 180◦ , C1 can be achieved by setting the control points in the first row either side of the boundary to be collinear with 
the respective points on the boundary, with ratio decided by the first non-zero knot intervals away from the boundary on 
the two sides. Furthermore, C2 can be achieved by knot removal. Here, knot removal refers to reduction of the multiplicity 
of the knot lines introduced by Bézier edge conditions at the boundary.

We used the knot removal method presented in Tiller (1992) to reduce the multiplicity of the knots, and in cases that 
the required knot removal fails, i.e., the knot is not ‘exactly’ removable, the approximation using Lyche’s L2 norm (Lyche and 
Mørken, 1987a, 1987b) is applied. Alternative approximation methods can be found in Eck and Hadenfeld (1995).

This process for C1 and C2 might change the model space edge curve. However, here we regard the maintenance of 
smoothness as more important than exact fitting of the edge curve (which does not match the desired intersection curve 
in the first place). The C1 merging in the sandal sole (Fig. 12) and C2 merging in the teapot (Fig. 1c) were obtained in this 
way.



J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35 27
Fig. 12. Sandal sole with 4 patches. The result subdivision surface achieves the desired C1 continuity between the top trimmed patch and the blend patch. 
Note the gaps between the input patches (highlighted in the red box). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 13. Error plots of the conversion results using uniform and non-uniform subdivision schemes (the teapot body parts shown in Fig. 1b and c). In the 
non-uniform case, the input boundary curves (including the trimming curves) are preserved. In the Catmull–Clark subdivision case, these boundary curves 
have to be re-approximated using uniform cubic B-splines. The result in (a) is generated with the approximation error of these curves less than 1 × 10−4.

Fig. 14. Error plots of the conversion results of sandal sole (the top patch). #V is the number of control points used in the result subdivision mesh, whose 
topology corresponds to the quad partition shown on the right. The approximation error drops when increasing #V by extra refinement steps in the 
topology construction step.

5.2. More than two patches at a common corner

If all edges are sharp then there are no issues, even if a concave corner is present in one (or more) of the faces (see 
the highlights on the left in Fig. 16). If all edges are smooth, then the corner may become an EV when the multiplicity 
of the knots is removed, and can be handled as such when computing control point locations (Section 4). If one or more 
non-smooth edges come into a corner which is essentially a flat one, then methods such as those of Kosinka et al. (2014b)
can be used.

6. Results and discussion

We have processed a number of examples to illustrate features of our method.

6.1. Smooth and sharp joins

We show examples with smooth joins in Figs. 12 and 17. In Fig. 12, in the input sandal sole model, the trimmed top 
patch and the side patch have a C1 blend surface in-between. The converted non-uniform subdivision surface has C1 joins 



28 J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35
Fig. 15. Pepper shaker. Input model and converted subdivision mesh and surface. Bézier edge conditions are used along all sharp edges.

Fig. 16. Ring. Pixar sharp rules are applied on the sharp edges of the extrusion during subdivision (close-ups on the right). The partition of the top part is 
shown in Fig. 4.

Fig. 17. Car seat. The converted subdivision mesh and surface after C2 merging. The domain partition of the patch on the top is also shown.

along the two sides of the blend surface. In Fig. 17, the car seat, we show smooth fitting of five separate patches. This model 
used knot removal to achieve exact C2 continuity.

The pepper shaker example shown in Fig. 15 illustrates gap-free sharp join of 4 patches using Bézier edge conditions. In 
Fig. 7, the aircraft wing/fuselage junction, and in Fig. 16, the ring with sharp edges along the extrusion, we show the use of 
Pixar sharp rules to handle the concave corner.

6.2. Approximation error

We evaluate the approximation error by sampling the distance of the output subdivision limit surface to the NURBS 
surfaces of the input model, with distance values scaled by the bounding box diagonal of the input model. More specifically, 
we subdivide the output subdivision control mesh sufficient times to generate over 30K vertices in the final mesh, compute 



J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35 29
Table 1
Timings. The number of NURBS patches in the input model, the number of control points (#V) and faces (#F) of the result subdivision control meshes, and 
the computation time involved in the surface fitting stage. The teapot example is the result shown in Figs. 1c, where only local region around the trimming 
curve is re-approximated, which involves 88 control points and 96 faces.

Model #Patch #EV #V #F Time (s)

Teapot (C0 merge) 2 4 451 412 0.319
Wheel arch 3 2 265 200 0.271
Aircraft Wing 2 3 207 174 0.523
Sandal sole 4 8 550 548 2.614
Pepper shaker 4 12 1019 987 4.223
Ring 4 16 762 718 2.874
Car seat 5 32 1122 1124 6.345

the limit positions of these subdivided vertices, and then compute the minimum distance of these limit points to the input 
NURBS surfaces.

As shown in Fig. 14, the approximation error can be reduced by further refinement during the topology construction 
step. Following Cashman’s method, we start with the quad partition generated in Section 3.1. Our first step of refinement 
inserts knot lines until no knot interval is larger than twice the minimum knot interval (Fig. 14a–b). The following steps 
insert knot lines in the middle of each knot interval (Fig. 14b–c).

6.3. Comparison with Catmull–Clark subdivision

In Fig. 1, we compare our teapot result for non-uniform subdivision against the result achieved using Catmull–Clark 
subdivision. The non-uniform subdivision mesh is much sparser than the Catmull–Clark subdivision mesh. In Fig. 13, we 
plot the approximation error of the teapot body using Catmull–Clark subdivision surface (Fig. 1b) and the non-uniform 
subdivision surface (Fig. 1c). This Catmull–Clark subdivision result is produced using the conversion method by Shen et 
al. (2014). A refined and smoothed uniform partition in the domain space is obtained with enough number of boundary 
control points so that the edge curves are re-approximated within tolerance 10−4 (using uniform knot intervals). Note that 
the conversion to Catmull–Clark subdivision leads to re-approximation of the untrimmed patches if its original boundary 
curves are changed. Although a coarser uniform partition could be made by adding appropriate constraints (Peng et al., 
2014), it is still non-trivial to avoid re-approximation of the untrimmed patches.

In contrast, the conversion to Cashman’s non-uniform subdivision approximates only the trimmed patches and keeps the 
untrimmed patches unchanged. Note that a patch trimmed along an iso-parameter line can be viewed as an untrimmed 
patch after knot insertion and splitting of the control mesh. The teapot spout (Fig. 1), the blend surface in the wheel arch 
(Fig. 11), and the wing in the aircraft (Fig. 7) belong to this case and are all matched exactly.

6.4. Timing

The control point computation is a least square fitting problem with terms built from the limit stencils (for the control 
points), bi-cubic B-splines evaluation (for extra samples), and thin-plate energy evaluation.

In Table 1, we list the number of control points and faces of the result subdivision control meshes, and the computation 
time involved in the surface fitting stage (including the time spent on building the matrix) for our examples. The timings 
were measured on a desktop PC equipped with Intel® Core™ i5-4570 CPU @ 3.20 GHz, 15.6 GB memory.

7. Limitations and future work

There are two cases that our method cannot directly handle. (1) Models that have a degenerate patch with a row of 
control points collapsed to one point, e.g., one quarter of a hemisphere. Pre-processing is required to convert the triangular 
patch to a non-degenerate rectangle patch which is half trimmed. (2) Models that require a mix of accurate continuity at 
the joined corner. In such cases, methods such as those of Kosinka et al. (2014a) need to be used.

The constrained linear programming problem in Section 3.1 can be unsolvable. The second spiralling configuration in 
Appendix E (Fig. 24, right) is an example of such case. One possible treatment is to introduce more EV pairs in the quad 
strips with incompatible knot intervals (Takayama et al., 2014; Myles et al., 2014).

In our method, most computations are done in the domains of the patches, which are, unlike in typical quad-meshing 
scenarios, readily available in CAD model definitions. This has advantages such as flexible control over the parametrisation 
of the non-uniform subdivision surface, the mesh density and inter-patch connectivity. On the other hand, this means that 
we are ignoring the Jacobian of the mapping to the 3D surface, which can have a detailed effect on the smoothing processes. 
It will be interesting to explore methods that are based on the combination of the information from both the domain and 
model space.

Finally, the output NURBS-compatible subdivision surface has the possibility to be converted to a collection of untrimmed
NURBS patches (Cashman, 2010, Section 6.2), with extraordinary regions represented as a nested series of spline rings and 
finite fillings near the EVs. This means that our method can be generalised to support the conversion of a collection of 



30 J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35
Fig. 18. Left: Convex corner. Right: Concave corner. Yellow points are required for enforcing Bézier edge conditions; grey ‘ghost’ points are required for the 
alternative edge conditions. Blue and green points are common to both ways of defining edge conditions. (For interpretation of the references to colour in 
this figure, the reader is referred to the web version of this article.)

trimmed NURBS patches to a (necessarily larger) collection of untrimmed NURBS patches, with the principal advantage that 
the collection of untrimmed patches will be watertight.

8. Conclusion

We present a novel framework to convert a trimmed NURBS model, which consists of several patches with inter-patch 
gaps, to a single gap-free non-uniform subdivision surface. The connectivity of the target subdivision base mesh is computed 
via quad partition in domain space. The control point positions are then obtained by solving a fitting problem based on the 
limit stencils of the subdivision scheme and the boundary conditions. We further introduce the Pixar sharp edge rules to 
the non-uniform subdivision to handle concave corners in trimming. The inter-patch merging (C0 or G1) is automatic. For 
some cases, C1 and C2 can be achieved. The approximation error is controllable via further refinements in the connectivity 
construction. Although this paper deals with cubic degree, the framework can be extended to support higher degrees, using 
Cashman’s subdivision scheme.

Appendix A. Concave corners

To better reveal the problem with concave corners, first consider the simpler case of a convex corner (Fig. 18, left). 
When using Bézier edge conditions (i.e., knots of multiplicity 4 along the two edges), the surface is controlled by the blue, 
yellow and green control points. Alternatively, we can use only single knots along the edges, in which case the yellow 
points are not in the control mesh and are ‘replaced’ by the points in grey, the so-called ‘ghost points’ (Schweitzer, 1996;
Lacewell and Burley, 2007). Blue points change position, but remain logically at the same place in the control mesh. The 
change from Bézier edge conditions to ghost points is facilitated by a set of linear conditions on the control points (we do 
not list them here as they are not needed in our system).

The important observation for the convex corner case is that the number of yellow points and the number of grey points 
is locally the same and thus both alternatives are able to represent the same underlying surface.

The situation at concave corners is more complicated (Fig. 18, right). A simple count reveals that there are locally 6 more 
yellow points than grey (ghost) points. This immediately reveals that it is impossible to use ghost points at concave corners 
and achieve full modelling freedom available at convex corners.

An alternative is to use multiple knots along boundary edges but, in the case of concave corners, these will propagate into 
the surface (indicated by the dashed lines in Fig. 18, right). This effectively splits the surface into several patches and causes 
potential further propagation into neighbouring patches. This is undesirable. A T-junction mechanism could be an alternative 
mechanism here. However, T-junctions are not currently part of Cashman’s NURBS-compatible subdivision (Cashman et al., 
2009) and adding them is a significant research project in its own right.

Instead, we chose to follow a different approach, that of sharp edges based on Pixar creases (DeRose et al., 1998), 
described in the next section, which solves the problem of concave corners.

Appendix B. Sharp edges

We need to be able to handle sharp edges in configurations such as at concave corners described above. We consid-
ered several alternatives including those proposed by Sederberg et al. (1998), Müller et al. (2006, 2010) and Kosinka et 
al. (2014b). We opted for a modification of Cashman’s (2010) framework, which we based on a generalisation of both Pixar 
rules (DeRose et al., 1998) and ghost points (Kosinka et al., 2014a) to the non-uniform setting required in our method.



J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35 31
Fig. 19. An example in the cubic case. P0 is the endpoint of the curve. Red ink indicates information that would be available in the smooth case but is 
missing in the sharp case. The input knot vector is given by the even knots. The odd knots are inserted, which corresponds to a subdivision step consisting 
of a refine stage and one smoothing stage. Note that P0 keeps its position through all stages and that the rules for computing p1

1 need to be modified as 
t−2 and P−2 are not available. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

B.1. The univariate case

Consider curves first; the surface case is then obtained by extending the ideas to the bivariate setting. Cashman’s (2010)
framework is based on a non-uniform refine-and-smooth algorithm (Cashman et al., 2009), which we need to extend to 
cover sharp edges. In the cubic case, there is one refine stage and one smoothing stage.

Fig. 19 shows an example. For clarity, instead of using notation based on blossoms (as in Cashman, 2010), we show 
all dependencies of points on knots, e.g. p3(t{0,2,3,4,6}) means that p3 depends on knots t0, t2, t3, t4, t6. In the example in 
Fig. 19, we see that p3 is computed as a weighted average of P2 and P4. The weights are given by standard blossoming 
(Cashman, 2010, Section 3). However, both P−2 and t−2 are missing at a sharp corner (edge) represented by P0 and we 
need to find appropriate replacements.

We generalise to the non-uniform setting an approach based on ghost points from the uniform setting (Kosinka et al., 
2014c). Because P−2 and t−2 are not available (they are ‘beyond’ the endpoint P0), we treat them as a ghost point and a 
ghost knot, respectively, which we are free to assign to achieve desirable end-conditions.

First, we set P−2 so that the resulting spline interpolates P0. Using the limit stencil of P0, denoted L(P0), or equiva-
lently the point on the spline curve c(t) corresponding to t0, we compute the position of P−2 from P0 = L(P0) = c(t0). 
Omitting the lengthy but straightforward details (which can be obtained using blossoming), this leads to the (one-sided) 
end-derivatives:

c′(t0) = 3 t0−t−2
(t2−t0)(t4−t−2)

(P2 − P0),

c′′(t0) = 6 2t0−t−2−t2
(t2−t0)2(t4−t−2)

(P2 − P0).
(6)

The ghost knot t−2 remains a free parameter and can be used to control (the magnitude of) c′(t0). In principle, t−2 could 
be used as a shape parameter, but we fix it instead to achieve compatibility with the uniform case and to ensure that c′(t0)

depends only on t0 and t2, but not t4.
To this end, we have to ensure that t0 − t−2 = α(t4 − t−2) for some real α. Solving for t−2 gives t−2 = (t0 −αt4)/(1 −α); 

α �= 1. Choosing α = 1/3 maintains consistency with the uniform setting and corresponds to t−2 = (3t0 − t4)/2, which 
yields

c′(t0) = 1
t2−t0

(P2 − P0),

c′′(t0) = 2 2t2−t0−t4
(t2−t0)2(t4−t0)

(P2 − P0).
(7)

Finally, observe that the position of the ghost point P−2 is not needed as P0 simply keeps its position during the two 
stages. Consequently, only t−2 = (3t0 − t4)/2 needs to be used to compute p1

1 and p2
2 via blossoming. This is simple to 

implement.
We now extend this to the bivariate setting.

B.2. The bivariate case

The bivariate case (the edge conditions) uses the tensor-product of the end-conditions in the univariate case (across 
the boundary) with the normal ones (along the boundary). It is beyond the scope of this document to cover all the 
theory needed in the bivariate setting. We thus restrict the exposition to the changes required to the implementation of 
NURBS-compatible subdivision surfaces by T.J. Cashman available from http :/ /www.cl .cam .ac .uk /research /rainbow /projects /
subdnurbs /nurbswep .html.

Our modified implementation that supports creases was used to convert the aircraft model in Fig. 7 and the ring model 
in Fig. 16.

The implementation is based on the ‘push’ paradigm. This ‘push’ way of thinking about and implementing subdivision 
first topologically refines the control mesh, then collects and normalises all contributions from old points to new points 

http://www.cl.cam.ac.uk/research/rainbow/projects/subdnurbs/nurbswep.html
http://www.cl.cam.ac.uk/research/rainbow/projects/subdnurbs/nurbswep.html


32 J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35
Fig. 20. Illustration on how to constrain the control points next to the boundary. Left: We show the domain space of the input NURBS (parameters u and v) 
in black and the local subdivision surface near the new boundary constructed from the trimmings (parameters s and t) in green. Right: The corresponding 
subdivision control mesh in model space. q∗ is in (u, v) coordinates and τ ∗ is in (s, t) coordinates. The subdivision control point p2,i (red bullet) needs 
to lie on the tangent plane at q1,i of the input NURBS surface (cyan dot in domain space), so that the tangent plane at q1,i on the NURBS surface is the 
same as the tangent plane at τ1,i on the subdivision surface. (For interpretation of the references to colour in this figure, the reader is referred to the web 
version of this article.)

after a refine or smoothing step. This is achieved by looping over all faces (quadrilaterals) of the control mesh and ‘pushing’ 
contributions of their four vertices onto the new control points.

Our modification is to ensure that no information is passed ‘across’ a sharp edge. As explained above, ghost points are 
never explicitly needed, only one ghost knot is needed at each sharp (boundary) edge. With this ghost knot, the refine stage 
and the smoothing stage then proceed as in the original implementation via blossoming.

Our modified implementation will be made available.

Appendix C. Boundary tangential constraints

We have Bézier edge conditions or Pixar sharp edge rules applied along the subdivision surface boundary, and so the 
limit stencils for points in the first layer next to the boundary do not exist. These points actually control the tangent planes 
at the boundary. Therefore, in the subdivision surface fitting stage, we constrain them to lie on the tangent planes of the 
input NURBS surface at the boundary. Using the notation of Fig. 20, let �qi = q2,i − q1,i , in (u, v) coordinates, and let 
τ 1,i = (si, 0) in (s, t) coordinates. Then(

∂N
∂u

,
∂N
∂v

)∣∣∣∣
q1,i

· �qi = ∂S
∂t

∣∣∣∣
τ 1,i

. (8)

The left side of Eq. (8) is known from the input NURBS surface N . The right side is the first partial derivative of the 
target subdivision surface S , derived from the chosen edge conditions. It involves the control points of S within the red 
dotted region in Fig. 20, right: the unknowns p2,∗ and boundary control points p1,∗ (which are already set up from the 
input boundary curves). Note that the boundary tangential constraint used by Shen et al. (2014) is the uniform case of this 
equation.

Appendix D. Limit stencils for EVs

As explained in Section 4.1, we only need limit stencils of EVs of valences 3 and 5 for degree 3. Using standard tools 
for obtaining limit stencils of stationary uniform subdivision schemes (Peters and Reif, 2008) and the bounded curvature 
coefficients from Section 5 of Cashman (2010), we obtained the limit stencils as the row eigenvector corresponding to the 
dominant eigenvalue (equal to 1) of the subdivision matrix for an EV of valence 3 and 5, respectively.

The limit stencils are shown in Fig. 21. The limit stencil comprises the 1-ring neighbourhood of the EV for valence 5, 
and an extra layer, due to an extra smoothing stage in Cashman’s scheme, for valence 3.

Note that these limit stencils apply only after a uniform region has been created around the EVs. These stencils corre-
spond to the bounded curvature solution. In the case of Catmull–Clark, the standard limit stencils apply.

Appendix E. Coarse quad layout

Here we describe the way we generate a coarse quad layout from a 2D domain bounded by curves for the examples in 
the paper. Alternative ways to produce a coarse quad layout include pattern-based quad meshing methods (Takayama et al., 
2014; Peng et al., 2014) and Campen et al.’s quad layout design methods (Campen et al., 2012; Campen and Kobbelt, 2014).

Following a procedure similar to that of Shen et al. (2014), we triangulate the 2D domain, compute a smooth frame field 
with constraints along boundaries and at corners (Section E.1), locate singularities in the field, trace the field for a valid 



J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35 33
Fig. 21. Left: Limit stencil for the limit position of an EV of valence 3. Right: Limit stencil for an EV of valence 5.

Fig. 22. (a) The frame field we adopted (right) generates a quad layout with better alignment along boundaries than the cross field based method (left) (Shen 
et al., 2014). (b) Frames at corners and along the boundary. The angle of the frame varies smoothly along the edge. (For interpretation of the colours in 
this figure, the reader is referred to the web version of this article.)

quad layout and finally simplify the layout if necessary (Section E.2, E.3). A simple comparison with the cross field is shown 
in Fig. 22a.

E.1. Frame field

To get good alignment at corners and along boundaries, we adopt the frame field of Diamanti et al. (2014). The field is 
defined on a 2D triangular mesh of the input trimmed domain. Each triangle face has a 2D frame which is constant inside 
the face.

Input directional constraints are set up along the oriented boundary curves. As illustrated in Fig. 22b, for each corner, we 
put a frame that matches both edge directions at this corner; for each boundary piece between two corners, we set up the 
frames along it: one direction, T (shown in red), follows the tangent of the boundary, and the other direction, D (shown in 
green), interpolates the corner frames in the following way.

D (t) = α (t)T (t) + β (t)T⊥ (t)

α (t) = (1 − t)α0 + tα1

β (t) = (1 − t)β0 + tβ1

where t is the parameter value (rescaled to [0, 1]) along the boundary curve, T (t) is the tangent of the curve, T⊥ (t) is the 
90◦ rotation of the tangent, α0, β0, α1, β1 are fixed from the frames at the two corners, respectively.

A smooth frame field is then computed via the IGL library (Diamanti et al., 2014). We use unit-length frames and our 
frame angle is bounded with minimum 30◦ . The singularities of the frame field are the locations of the EVs in the desired 
quad mesh. They are identified by using the cross field defined by the frame bisectors (Diamanti et al., 2014).

E.2. Tracing for a quad layout

We trace streamlines from each EV and each concave corner (all defined on a vertex). The initial tracing directions from 
an EV (or corner) are selected by clustering the vector directions in the ring of faces round it. For each streamline, the 



34 J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35
Fig. 23. Tracing for a coarse quad layout. The final coarse quad layout is shown in (c) after removing the narrow quadrilateral face strip, i.e., eliminating the 
edges marked in red in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 24. Left: a spiral trace resolved by back-tracing and snapping. (a) Identify candidate points (singularity or concave corner) for snapping. The separatrix 
of the candidate point is referred to as ‘slot’ and is highlighted with an outgoing blue arrow if it has not been booked by other streamlines. (b)–(e) Trace 
backwards. Each black point shows a successive ‘closest point’ on the trace to one or other of the candidate points; the black point in (e) is identified as 
the optimum match with an available slot. (f) Snap the trace to the appropriate candidate point. Right: spiralling resolved by adding an EV3–EV5 pair.

tracing continues until it hits an EV, a corner or a boundary. Tracing also terminates if the length of the trace exceeds a 
certain threshold. This latter condition indicates a spiral has occurred. Other robustness issues in field tracing can be dealt 
with as explained by Myles et al. (2014) and Ray et al. (2014). We have not encountered any problems, other than spiralling, 
in any of our examples.

We resolve spirals by walking back along the spiral and seeking neighbouring EVs or concave corners to which they can 
be snapped (Fig. 24, see Section E.3 for details). An alternative way is to adopt the method proposed by Myles et al. (2014). 
They prevent spirals by forming a partition that allows T-joins and then resolving the topology by either removing zero 
quad chains or introducing new singularity pairs.

E.3. Spiralling

There are two manifestations of spirals. The first is owing to inaccuracies in the (discrete) skew field and tracing (Fig. 24
left); this is remedied by back-tracing and snapping to a nearby available slot. The second manifestation is not an implemen-
tation issue but inherent in the given topology (Fig. 24 right); it can be remedied by an appropriate topological refinement 
comprising the introduction of an EV3–EV5 pair.

For our examples, the spiralling occurs when tracing fails to join up with an existing vertex and circles forever round 
a hole in the mesh (Fig. 23a). We identify that a spiral has occurred when the length of the trace becomes larger than 5
times the bounding box diagonal. As illustrated in Fig. 24 left, our remedial algorithm traces back along the spiral, seeking 
neighbouring EVs or concave corners to which the trace could be snapped. The snap condition is that there is no incoming 
trace in the candidate slot of that neighbouring EV (or concave corner). It snaps the trace to the matching neighbour with 
an available slot and the maximum eliminating length, or introduces two new EVs if there is no match (Fig. 24 right).



J. Shen et al. / Computer Aided Geometric Design 48 (2016) 17–35 35
Once all the streamlines are normal, they form a coarse quad layout together with the domain boundary. The quad 
layout from the above process might have narrow strips and so we further simplify the topology to a coarse quad layout 
(Fig. 23b–c) by removing these strips (Tarini et al., 2011).

References

Alliez, Pierre, Cohen-Steiner, David, Devillers, Olivier, Lévy, Bruno, Desbrun, Mathieu, 2003. Anisotropic polygonal remeshing. ACM Trans. Graph. 22 (3), 
485–493.

Berkelaar, Michel, Eikland, Kjell, Notebaert, Peter, 2004. lpsolve: open source (Mixed-Integer) Linear Programming system.
Bommes, David, Campen, Marcel, Ebke, Hans-Christian, Alliez, Pierre, Kobbelt, Leif, 2013. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32 

(4).
Bommes, David, Zimmer, Henrik, Kobbelt, Leif, 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28 (3), 1.
Campen, Marcel, Bommes, David, Kobbelt, Leif, 2012. Dual loops meshing. ACM Trans. Graph. 31 (4), 1–11.
Campen, Marcel, Kobbelt, Leif, 2014. Dual strip weaving: interactive design of quad layouts using elastica strips. ACM Trans. Graph. 33 (6), 183:1–183:10.
Cashman, Thomas J., 2010. NURBS-compatible subdivision surfaces. Technical report UCAM-CL-TR-773. University of Cambridge, Computer Laboratory (Doc-

toral thesis).
Cashman, Thomas J., Augsdörfer, Ursula H., Dodgson, Neil A., Sabin, Malcolm A., 2009. NURBS with extraordinary points: high-degree, non-uniform, rational 

subdivision schemes. ACM Trans. Graph. 28 (3), 1.
de Boor, Carl, 1972. On calculating with b-splines. J. Approx. Theory 6 (1), 50–62.
Deng, Chongyang, Lin, Hongwei, 2014. Progressive and iterative approximation for least squares B-spline curve and surface fitting. Comput. Aided Des. 47, 

32–44.
DeRose, Tony, Kass, Michael, Truong, Tien, 1998. Subdivision surfaces in character animation. In: Proc. SIGGRAPH ’98. ACM Press, pp. 85–94.
Diamanti, Olga, Vaxman, Amir, Panozzo, Daniele, Sorkine-Hornung, Olga, 2014. Designing N-polyVector fields with complex polynomials. Comput. Graph. 

Forum 33 (5), 1–11.
Eck, Matthias, Hadenfeld, Jan, 1995. Knot removal for b-spline curves. Comput. Aided Geom. Des. 12 (3), 259–282.
Floater, Michael S., 2000. Meshless parameterization and B-spline surface approximation. In: Proc. 9th IMA Conference on the Mathematics of Surfaces. 

Springer-Verlag, pp. 1–18.
Halstead, Mark, Kass, Michael, DeRose, Tony, 1993. Efficient, fair interpolation using Catmull–Clark surfaces. In: Proc. SIGGRAPH ’93. ACM Press, pp. 35–44.
Jiang, Tengfei, Fang, Xianzhong, Huang, Jin, Bao, Hujun, Tong, Yiying, Desbrun, Mathieu, 2015. Frame field generation through metric customization. ACM 

Trans. Graph. 34 (4), 40:1–40:11.
Imre, Juhász, Hoffmann, Miklós, 2001. The effect of knot modifications on the shape of B-spline curves. J. Geom. Graph. 5, 111–119.
Kosinka, J., Sabin, M.A., Dodgson, N.A., 2014a. Semi-sharp creases on subdivision curves and surfaces. Comput. Graph. Forum 33 (5), 217–226.
Kosinka, J., Sabin, M.A., Dodgson, N.A., 2014b. Subdivision surfaces with creases and truncated multiple knot lines. Comput. Graph. Forum 33 (1), 118–128.
Kosinka, Jiří, Sabin, Malcolm, Dodgson, Neil, 2014c. Creases and boundary conditions for subdivision curves. Graph. Models 76 (5), 240–251.
Lacewell, Dylan, Burley, Brent, 2007. Exact evaluation of Catmull–Clark subdivision surfaces near B-Spline boundaries. J. Graph. GPU Game Tools 12 (3), 

7–15.
Lyche, Tom, Mørken, Knut, 1987a. Algorithms for Approximation. Clarendon Press.
Lyche, Tom, Mørken, Knut, 1987b. Knot removal for parametric b-spline curves and surfaces. Comput. Aided Geom. Des. 4 (3), 217–230.
Müller, Kerstin, Fünfzig, Christoph, Reusche, Lars, Hansford, Dianne, Farin, Gerald, Hagen, Hans, 2010. Dinus: double insertion, nonuniform, stationary 

subdivision surfaces. ACM Trans. Graph. 29 (3), 1–21.
Müller, Kerstin, Reusche, Lars, Fellner, Dieter, 2006. Extended subdivision surfaces: building a bridge between NURBS and Catmull–Clark surfaces. ACM 

Trans. Graph. 25 (2), 268–292.
Myles, Ashish, Pietroni, Nico, Zorin, Denis, 2014. Robust field-aligned global parametrization. ACM Trans. Graph. 33 (4), 135:1–135:14.
Palacios, Jonathan, Zhang, Eugene, 2010. Interactive visualization of rotational symmetry fields on surfaces. IEEE Trans. Vis. Comput. Graph. 17 (7), 947–955.
Peng, Chi-Han, Barton, Michael, Jiang, Caigui, Wonka, Peter, 2014. Exploring quadrangulations. ACM Trans. Graph. 33 (1), 12:1–12:13.
Peters, Jörg, Reif, Ulrich, 2008. Subdivision Surfaces. Springer Publishing Company, Incorporated, ISBN 978-3-540-76405-2.
Peters, Jörg, Wu, Xiaobin, 2006. On the local linear independence of generalized subdivision functions. SIAM J. Numer. Anal. 44 (6), 2389–2407.
Ray, Nicolas, Sokolov, Dmitry, 2014. Robust polylines tracing for n-symmetry direction field on triangulated surfaces. ACM Trans. Graph. 33 (3), 30:1–30:11.
Rhinoceros, 2014. http://www.rhino3d.com/tutorials.
Schweitzer, Jean E., 1996. Analysis and application of subdivision surfaces. Doctoral thesis. University of Washington.
Sederberg, Thomas W., Finnigan, G. Thomas, Li, Xin, Lin, Hongwei, Ipson, Heather, 2008. Watertight trimmed NURBS. ACM Trans. Graph. 27 (3), 1.
Sederberg, Thomas W., Zheng, Jianmin, Bakenov, Almaz, Nasri, Ahmad, 2003. T-splines and T-NURCCs. ACM Trans. Graph. 22 (3), 477.
Sederberg, Thomas W., Zheng, Jianmin, Sewell, David, Sabin, Malcolm, 1998. Non-uniform recursive subdivision surfaces. In: Proc. SIGGRAPH ’98. ACM Press, 

pp. 387–394.
Shen, Jingjing, Kosinka, Jiří, Sabin, Malcolm, Dodgson, Neil, 2014. Conversion of trimmed NURBS surfaces to Catmull–Clark subdivision surfaces. Comput. 

Aided Geom. Des. 31 (7–8), 486–498.
Stam, Jos, 1998. Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary parameter values. In: Proc. SIGGRAPH ’98. ACM, pp. 395–404.
Takayama, Kenshi, Panozzo, Daniele, Sorkine-Hornung, Olga, 2014. Pattern-based quadrangulation for n-sided patches. Comput. Graph. Forum 33 (5), 

177–184.
Tarini, Marco, Puppo, Enrico, Panozzo, Daniele, Pietroni, Nico, Cignoni, Paolo, 2011. Simple quad domains for field aligned mesh parametrization. ACM Trans. 

Graph. 30 (6), 142:1–142:12.
Tiller, Wayne, 1992. Knot-removal algorithms for nurbs curves and surfaces. Comput. Aided Des. 24 (8), 445–453.
Vermeulen, A.H., Bartels, R.H., Heppler, G.R., 1992. Integrating products of b-splines. SIAM J. Sci. Stat. Comput. 13 (4), 1025–1038.
Weiss, V., Andor, L., Renner, G., Várady, T., 2002. Advanced surface fitting techniques. Comput. Aided Geom. Des. 19 (1), 19–42.

http://refhub.elsevier.com/S0167-8396(16)30089-9/bib416C6C69657A32303033s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib416C6C69657A32303033s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib426F6D6D657332303133s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib426F6D6D657332303133s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib426F6D6D657332303039s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib43616D70656E32303132s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib43616D70656E32303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib436173686D616E32303130s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib436173686D616E32303130s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib436173686D616E3230303962s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib436173686D616E3230303962s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4465626F6F7231393732s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib44656E6732303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib44656E6732303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4465526F736531393938s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4469616D616E746932303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4469616D616E746932303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib45636B31393935s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib466C6F617465723230303061s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib466C6F617465723230303061s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib48616C737465616431393933s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4A69616E6732303135s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4A69616E6732303135s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib496D72654A756861737A32303031s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4B6F5361446F313462s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4B6F73696E6B6132303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4B6F5361446F313463s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4C61636577656C6C32303037s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4C61636577656C6C32303037s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4C796368653139383761s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4C7963686531393837s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4D756C6C657232303130s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4D756C6C657232303130s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4D756C6C657232303036s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4D756C6C657232303036s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib4D796C657332303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib50616C6163696F7332303130s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib50656E6732303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib506552653038s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib50657465727332303036s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib52617932303134s1
http://www.rhino3d.com/tutorials
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib53633936s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib53656465726265726732303038s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib53656465726265726732303033s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib53656465726265726731393938s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib53656465726265726731393938s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib5368656E32303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib5368656E32303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib5374616D31393938s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib54616B6179616D6132303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib54616B6179616D6132303134s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib546172696E6932303131s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib546172696E6932303131s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib54696C6C657231393932s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib5665726D65756C656E31393932s1
http://refhub.elsevier.com/S0167-8396(16)30089-9/bib576569737332303032s1

	Converting a CAD model into a non-uniform subdivision surface
	1 Introduction
	2 Background and related work
	2.1 Methods to make trimmed NURBS gap-free
	2.2 NURBS-compatible subdivision
	2.3 Quad layout
	2.4 Surface ﬁtting

	3 Topology construction of a non-uniform subdivision mesh
	3.1 Quad layout with knot intervals
	3.2 Reﬁnement
	3.3 Smoothing the quad partition
	3.4 Limiting the area approximated (optional)

	4 Computing control point locations
	4.1 Limit stencils
	4.2 Boundary
	4.3 Interior control points

	5 Merging subdivision patches
	5.1 Two patches meeting at a common edge γ
	5.2 More than two patches at a common corner

	6 Results and discussion
	6.1 Smooth and sharp joins
	6.2 Approximation error
	6.3 Comparison with Catmull-Clark subdivision
	6.4 Timing

	7 Limitations and future work
	8 Conclusion
	Appendix A Concave corners
	Appendix B Sharp edges
	B.1 The univariate case
	B.2 The bivariate case

	Appendix C Boundary tangential constraints
	Appendix D Limit stencils for EVs
	Appendix E Coarse quad layout
	E.1 Frame ﬁeld
	E.2 Tracing for a quad layout
	E.3 Spiralling

	References


