دانلود رایگان مقاله پیچیدگی اصلاح سلسله مراتبی برای طبقه از پیکربندی شبکه مجاز

عنوان فارسی
پیچیدگی اصلاح سلسله مراتبی برای طبقه از پیکربندی شبکه مجاز
عنوان انگلیسی
Complexity of hierarchical refinement for a class of admissible mesh configurations
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
10
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E548
رشته های مرتبط با این مقاله
ریاضی و مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
ریاضی کاربردی و نرم افزار
مجله
طراحی هندسی به کمک کامپیوتر - Computer Aided Geometric Design
دانشگاه
موسسه ریاضیات کاربردی و فناوری اطلاعات، ایتالیا
کلمات کلیدی
اسپلاین THB، انطباق،
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


An adaptive isogeometric method based on d-variate hierarchical spline constructions can be derived by considering a refine module that preserves a certain class of admissibility between two consecutive steps of the adaptive loop ( Buffa and Giannelli, 2016). In this paper we provide a complexity estimate, i.e., an estimate on how the number of mesh elements grows with respect to the number of elements that are marked for refinement by the adaptive strategy. Our estimate is in the line of the similar ones proved in the context of adaptive finite element methods.

نتیجه گیری

4. Conclusions


We developed a complexity estimate which states that the ratio between the refined elements and the marked elements along the refinement history stays bounded if refinement is performed as proposed in (Buffa and Giannelli, 2016). In particular, this estimate guarantees that if the refinement routine is applied very often in the same location (e.g., for resolving a singularity), then it will asymptotically remain local. Note that for a single refinement step, a uniform (with constants independent on the level) estimate bounding the number of refined elements in terms of the marked ones is not possible (Nochetto and Veeser, 2012). Our work paves the way to the analysis of optimal convergence of the adaptive strategy proposed in (Buffa and Giannelli, 2016) that will be addressed in further studies (Buffa and Giannelli, in preparation).


بدون دیدگاه