سوالات استخدامی کارشناس بهداشت محیط با جواب
- مبلغ: ۸۴,۰۰۰ تومان
ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
With the rapid development and application of the mobile Internet, huge amounts of user data are generated and collected every day. How to take full advantages of these ubiquitous data is becoming the essential aspect of a recommender system. Collaborative filtering (CF) has been widely studied and utilized to predict the interests of mobile users and to make proper recommendations. In this paper, we first propose a framework of the CF recommender system based on various user data including user ratings and user behaviors. Key features of these two kinds of data are discussed. Moreover, several typical CF algorithms are classified as memory-based approaches and model-based approaches and compared. Two case studies are presented in an effort to validate the proposed framework.