منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی الگوریتم خوشه بندی با استفاده از تشخیص مرزی مبتنی بر کجی - الزویر 2018

عنوان فارسی
الگوریتم خوشه بندی با استفاده از تشخیص مرزی مبتنی بر کجی
عنوان انگلیسی
A clustering algorithm using skewness-based boundary detection
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
9
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E7547
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
شبکه های کامپیوتری، مهندسی الگوریتم ها و محاسبات
مجله
محاسبات عصبی - Neurocomputing
دانشگاه
School of Information Engineering - Zhengzhou University - Zhengzhou - China
کلمات کلیدی
چولگی، درجه مرزی، الگوریتم خوشه بندی، مرز خوشه بندی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


Clustering analysis has been applied in all aspects of data mining. Density-based and grid-based clustering algorithms are used to form clusters from the core points or dense grids to extend to the boundary of the clusters. However, deficiencies are still existed. To find out the right boundary and improve the precision of the cluster, this paper has proposed a new clustering algorithm (named C-USB) based on the skew characteristic of the data distribution in the cluster margin region. The boundary degree calculated by skew degree and the local density are used to distinguish whether a data is an internal point or non-internal point. And the connected matrix is constructed by removing the neighbor relationships of non-internal points from the relationships of all points, then the clusters can be formed by searching from the connected matrix towards internal of the clusters. Experimental results on synthetic and real data sets show that the C-USB has higher accuracy than that of similar algorithms.

نتیجه گیری

5. Conclusion


Based on the skewed distribution of data points in the boundary area, this paper has proposed a skewness-based measurement method. This method can effectively measure the boundary degree of data points and distinguish the boundary points accurately of the data. The performance of clustering or is on par with the existing latest algorithms. In addition, the boundary detected by the algorithm stated in the paper can better represent the actual situation of clustering boundaries, which playing significant role in data mining.


بدون دیدگاه