ABSTRACT
The digitalization of the healthcare system has resulted in a deluge of clinical Big Data and has prompted the rapid growth of data science in medicine. Data science, which is the field of study dedicated to the principled extraction of knowledge from complex data, is particularly relevant in the critical care setting. The availability of large amounts of data in the intensive care unit, the need for better evidence-based care, and the complexity of critical illness makes the use of data science techniques and data-driven research particularly appealing to intensivists. Despite the increasing number of studies and publications in the field, so far there have been few examples of data science projects that have resulted in successful implementations of data-driven systems in the intensive care unit. However, given the expected growth in the field, intensivists should be familiar with the opportunities and challenges of Big Data and data science. In this paper, we review the definitions, types of algorithms, applications, challenges, and future of Big Data and data science in critical care.