دانلود رایگان مقاله یادگیری فعال مبتنی بر دسته: به کار گیری در داده رسانه اجتماعی

عنوان فارسی
یادگیری فعال مبتنی بر دسته: به کار گیری در داده های رسانه های اجتماعی به منظور مدیریت بحران
عنوان انگلیسی
Batch-based Active Learning: Application to Social Media Data for Crisis Management
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
43
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E5516
رشته های مرتبط با این مقاله
مدیریت و مهندسی فناوری اطلاعات
گرایش های مرتبط با این مقاله
تجارت الکترونیک
مجله
سیستم های خبره به همراه کاربردها - Expert Systems With Applications
دانشگاه
Institute of Information Technology - Klagenfurt - Austria
کلمات کلیدی
یادگیری آنلاین، یادگیری فعال، طبقه بندی، رسانه های اجتماعی، مدیریت بحران
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Classification of evolving data streams is a challenging task, which is suitably tackled with online learning approaches. Data is processed instantly requiring the learning machinery to (self-)adapt by adjusting its model. However for high velocity streams, it is usually difficult to obtain labeled samples to train the classification model. Hence, we propose a novel online batch-based active learning algorithm (OBAL) to perform the labeling. OBAL is developed for crisis management applications where data streams are generated by the social media community. OBAL is applied to discriminate relevant from irrelevant social media items. An emergency management user will be interactively queried to label chosen items. OBAL exploits the boundary items for which it is highly uncertain about their class and makes use of two classifiers: k-Nearest Neighbors (kNN) and Support Vector Machine (SVM). OBAL is equipped with a labeling budget and a set of uncertainty strategies to identify the items for labeling. An extensive analysis is carried out to show OBAL’s performance, the sensitivity of its parameters, and the contribution of the individual uncertainty strategies. Two types of datasets are used: synthetic and social media datasets related to crises. The empirical results illustrate that OBAL has a very good discrimination power.


بدون دیدگاه