دانلود رایگان مقاله انگلیسی تجریه و تحلیل عملکرد دانشجویان با استفاده از تکنیک های داده کاوی - IEEE 2018

عنوان فارسی
تجریه و تحلیل عملکرد دانشجویان با استفاده از تکنیک های داده کاوی
عنوان انگلیسی
Analyzing Performance of Students by Using Data Mining Techniques
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
4
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
کد محصول
E7080
رشته های مرتبط با این مقاله
مهندسی صنایع، کامیپوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
داده کاوی، نرم افزار، مدیریت فناوری اطلاعات
مجله
چهارمین کنفرانس بین المللی بخش IEEE Uttar Pradesh برق - کامپیوتر و الکترونیک - 4th Section International Conference on Electrical - Computer and Electronics
دانشگاه
Department of Computer Science and Engineering - ASET - Amity University
کلمات کلیدی
کاوش داده های آموزشی، آموزش تحلیلی، پیش بینی، طبقه بندی، رگرسیون، درخت تصمیم گیری
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


With the birth of new technologies which can harness data associated with education, the field of Educational Data Mining (EDM) has bloomed. EDM is a research area which uses data mining techniques, machine learning algorithms and statistical techniques to understand how students learn, predict students’ academic performance and how a student’s learning can be improved. This paper conducts extensive review of the literature on the use of EDM for analyzing performance of student.

نتیجه گیری

V. CONCLUSION


Due to in depth research in education, birth of new advanced technologies which can harness data associated with education to improve the quality of Education with emphasis more on predicting student’s success and failure and help student to achieve success, predicting student performance has become a very popular research area. With thorough research in the field of EDM and LA the new trend is predicting student’s performance with the help of Data Mining Techniques, Machine Learning Algorithms and Statistical techniques and approaches. Much research has been done in “Predicting Student Performance”. Most research has been done by collecting data through questionnaires. Most of the work has been done through different Classification Techniques, using CRIPS-DM model. Most Common tools used are WEKA and R.


بدون دیدگاه