دانلود رایگان مقاله انگلیسی یک بررسی تجربی در چارچوب داده های بزرگ - الزویر 2018

عنوان فارسی
یک بررسی تجربی در چارچوب داده های بزرگ
عنوان انگلیسی
An experimental survey on big data frameworks
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
19
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E7678
رشته های مرتبط با این مقاله
مهندسی فناوری اطلاعات و مدیریت
گرایش های مرتبط با این مقاله
مدیریت سیستمهای اطلاعات، سیستم های اطلاعاتی پیشرفته
مجله
نسل آینده سیستم های کامپیوتری - Future Generation Computer Systems
دانشگاه
University of Tunis El Manar - Faculty of Sciences of Tunis - LIPAH - Tunis - Tunisia
کلمات کلیدی
اطلاعات بزرگ، نقشه کاهشی، هادوپ، HDFS، جرقه، فلینک، طوفان، سامزا، فرآیند دسته / جریان
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


Recently, increasingly large amounts of data are generated from a variety of sources. Existing data processing technologies are not suitable to cope with the huge amounts of generated data. Yet, many research works focus on Big Data, a buzzword referring to the processing of massive volumes of (unstructured) data. Recently proposed frameworks for Big Data applications help to store, analyze and process the data. In this paper, we discuss the challenges of Big Data and we survey existing Big Data frameworks. We also present an experimental evaluation and a comparative study of the most popular Big Data frameworks with several representative batch and iterative workloads. This survey is concluded with a presentation of best practices related to the use of studied frameworks in several application domains such as machine learning, graph processing and real-world applications.

نتیجه گیری

6. Conclusions


In this work, we surveyed popular frameworks for large-scale data processing. After a brief description of the main paradigms related to Big Data problems, we presented an overview of the Big Data frameworks Hadoop, Spark, Storm and Flink. We presented a categorization of these frameworks according to some main features such as the used programming model, the type of data sources, the supported programming languages and whether the framework allows iterative processing or not. We also conducted an extensive comparative study of the above presented frameworks on a cluster of machines and we highlighted best practices while using the studied Big Data frameworks.


بدون دیدگاه