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a b s t r a c t

Recently, increasingly large amounts of data are generated from a variety of sources. Existing data pro-
cessing technologies are not suitable to copewith the huge amounts of generated data. Yet,many research
works focus on Big Data, a buzzword referring to the processing ofmassive volumes of (unstructured) data.
Recently proposed frameworks for Big Data applications help to store, analyze and process the data. In
this paper, we discuss the challenges of Big Data and we survey existing Big Data frameworks. We also
present an experimental evaluation and a comparative study of the most popular Big Data frameworks
with several representative batch and iterative workloads. This survey is concluded with a presentation
of best practices related to the use of studied frameworks in several application domains such as machine
learning, graph processing and real-world applications.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, increasingly large amounts of data are gen-
erated from a variety of sources. The size of generated data per day
on the Internet has already exceeded two exabytes [1]. Within one
minute, 72 h of videos are uploaded toYoutube, around30.000new
posts are created on the Tumblr blog platform, more than 100.000
Tweets are shared on Twitter and more than 200.000 pictures are
posted on Facebook [1].

Big Data problems lead to several research questions such as
(1) how to design scalable environments, (2) how to provide fault
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tolerance and (3) how to design efficient solutions. Most existing
tools for storage, processing and analysis of data are inadequate for
massive volumes of heterogeneous data. Consequently, there is an
urgent need for more advanced and adequate Big Data solutions.

Many definitions of Big Data have been proposed throughout
the literature. Most of them agreed that Big Data problems share
four main characteristics, referred to as the four V’s (Volume,
Variety, Veracity and Velocity) [2]. The volume refers to the size of
available datasets which typically require distributed storage and
processing. The variety refers to the fact that Big Data is composed
of several different types of data such as text, sound, image and
video. The veracity refers to the biases, noise and abnormality in
data. The velocity deals with the place at which data flows in from
various sources like social networks, mobile devices and Internet
of Things (IoT).
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In this paper, we first give an overview of most popular and
widely used Big Data frameworks which are designed to cope
with the above mentioned Big Data problems. We identify some
key features which characterize Big Data frameworks. These key
features include the programming model and the capability to
allow for iterative processing of (streaming) data. We also give a
categorization of existing frameworks according to the presented
key features. Then, we present an experimental study on Big Data
processing systems with several representative batch, stream and
iterative workloads.

Extensive surveys have been conducted to discuss Big Data
Frameworks [3,4,5]. However, our experimental survey differs
from existing ones by the fact that it considers performance eval-
uation of popular Big Data frameworks from different aspects. In
our work, we compare the studied frameworks in the case of both
batch processing and stream processing which is not studied in
existing surveys. We also mention that our experimental study
is concluded by some best practices related to the usage of the
studied frameworks in several application domains.

More specifically, the contributions of this paper are the follow-
ing:

• We present an overview of most popular Big Data frame-
works and we categorize them according to some features.

• We experimentally evaluate the performance of the pre-
sented frameworks and we present a comparative study of
them in the case of both batch processing, stream process-
ing.

• We highlight best practices related to the use of popular Big
Data frameworks in several application domains.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present existing surveys on Big Data frameworks and
we highlight the motivation of our work. In Section 3, we discuss
existing BigData frameworks and provide a categorization of them.
In Section 4, we present a comparative study of the presented Big
Data frameworks and we discuss the obtained results. In Section 5,
we present some best practices of the studied frameworks. Some
concluding points are given in Section 6.

2. Related works

In this section, we highlight the existing surveys on Big Data
frameworks and we describe their main contributions. From the
ten discussed surveys, only six have experimentally studied some
of the Big Data frameworks.

In [6], the authors compared several MapReduce implemen-
tations like Hadoop [7], Twister [8] and LEMO-MR [9] on many
workloads. Particularly, performance and scalability of the studied
frameworks have been evaluated.

In [10], an experimental study on Spark, Hadoop and Flink
has been conducted. Mainly, the impact of some configuration
parameters of the studied frameworks (e.g., number of mappers
and reducers in Hadoop, number of threads in the case of Spark
and Flink) on the runtime while running several workloads was
studied.

In [11], the authors conducted an experimental study on Spark
and Hadoop. They developed two profiling tools: (1) a study of the
resource utilization for both MapReduce and Spark; (2) a break-
down of the task execution time for in-depth analysis. The con-
ducted experiments showed that Spark is about 2.5x, 5x, and 5x
faster than MapReduce, for WordCount, k-means, and PageRank
workloads, respectively.

Some other works like [3,5,12,13] tried to highlight Big Data
fundamentals. They discussed the challenges related to Big Data

applications and they presented themain features of someBigData
processing frameworks.

Two works have compared Spark and Flink from theoretical
and/or experimental point of view [14,15]. Scalability and impact
of the size on disk, as well as the performance of specific func-
tionalities of the compared frameworks have been considered.
In [14], the authors discussed the main difference between Spark
and Flink and presented an empirical study of both frameworks
in the case of machine learning applications. In [15], Marcu et al.
studied the impact of different architectural choices and parameter
configurations on the perceived performance in the case of batch
processing is studied. The performance of the studied frameworks
has been evaluated with several representative batch and iterative
workloads.

The work presented in [16] deals with in-memory Big Data
management and processing frameworks. The authors provided
a review of several in-memory data management and processing
proposals and systems, including both data storage systems and
data processing frameworks. They also presented some key factors
that need to be considered in order to achieve efficient in-memory
datamanagement and processing, such as RDD for in-memory data
persistence, immutable objects to improve response time, and data
placement optimization.

In [17], the authors conducted an experimental study on Storm
and Flink in a stream processing context. The aim of the conducted
study is to understand how current design aspects of modern
stream processing systems interact with modern processors when
running different types of applications. However, the studymainly
focuses on evaluating the common design aspects of stream pro-
cessing systems on scale-up architectures, rather than comparing
the performance of individual systems.

We mention that most of the above presented surveys are
limited in terms of both the evaluated features of Big Data frame-
works and the number of considered frameworks. For example,
in [17], only stream processing frameworks are considered while
in [6,10,14,15], only batch processing frameworks are considered.
We highlight that our experimental survey differs from the above
presented works by the fact that it compares the studied frame-
works in the case of both batch and stream processing. It also
deals with several representative batch and iterative workloads
which is not considered in most existing surveys. Add to that,
additional parameters (e.g., memory, threads) are configured to
better evaluate the discussed frameworks. Moreover, monitoring
capacities differentiate our work from the existing surveys. In
fact, a personalized tool is implemented for the different tests to
effectively monitor resource usage.

3. Big data frameworks

In this section, we survey some popular Big Data frameworks
and categorize them according to their key features. These key fea-
tures are (1) the programming model, (2) the supported program-
ming languages, (3) the type of data sources and (4) the capability
to allow for iterative data processing, (5) the compatibility of the
framework with existing machine learning libraries, and (6) the
fault tolerance strategy.

Running Example. Throughout this paper, we use the Word-
Count program as a running example in order to explain the
studied frameworks. The WordCount example consists on reading
a set of text files and counting how often words occur. Snapshots
of the codes used to implement the WordCount example with
the studied frameworks are available in this link https://members.
loria.fr/SAridhi/files/software/bigdata/.

https://members.loria.fr/SAridhi/files/software/bigdata/
https://members.loria.fr/SAridhi/files/software/bigdata/
https://members.loria.fr/SAridhi/files/software/bigdata/
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Fig. 1. The MapReduce architecture.

3.1. Apache Hadoop

3.1.1. Hadoop system overview
Hadoop is an Apache project founded in 2008 by Doug Cutting

at Yahoo and Mike Cafarella at the University of Michigan [18].
Hadoop consists of twomain components: (1) Hadoop Distributed
File System (HDFS) for data storage and (2) Hadoop MapReduce,
an implementation of the MapReduce programming model [19].
In what follows, we discuss the MapReduce programming model,
HDFS and Hadoop MapReduce.

MapReduce Programming Model. MapReduce is a program-
ming model that was designed to deal with parallel processing
of large datasets. MapReduce has been proposed by Google in
2004 [19] as an abstraction that allows to perform simple com-
putations while hiding the details of parallelization, distributed
storage, load balancing and enabling fault tolerance. The central
features of theMapReduce programmingmodel are two functions,
written by a user: Map and Reduce. The Map function takes a
single key–value pair as input and produces a list of intermediate
key–value pairs. The intermediate values associatedwith the same
intermediate key are grouped together and passed to the Reduce
function. The Reduce function takes as input an intermediate key
and a set of values for that key. It merges these values together to
form a smaller set of values. The system overview of MapReduce is
illustrated in Fig. 1.

As shown in Fig. 1, the basic steps of a MapReduce program are
as follows:

1. Data reading: in this phase, the input data is transformed
to a set of key–value pairs. The input data may come from

Fig. 2. HDFS architecture.

various sources such as file systems, database management
systems or main memory (RAM). The input data is split into
several fixed-size chunks. Each chunk is processed by one
instance of the Map function.

2. Map phase: for each chunk having the key–value structure,
the corresponding Map function is triggered and produces a
set of intermediate key–value pairs.

3. Combine phase: this step aims to group together all inter-
mediate key–value pairs associated with the same interme-
diate key.

4. Partitioningphase: following their combination, the results
are distributed across the different Reduce functions.

5. Reduce phase: the Reduce function merges key–value pairs
having the same key and computes a final result.

HDFS. HDFS is an open source implementation of the dis-
tributed Google File System (GFS) [20]. It provides a scalable dis-
tributed file system for storing large files over distributedmachines
in a reliable and efficient way [21]. In Fig. 2, we show the abstract
architecture of HDFS and its components. It consists of a mas-
ter/slave architecture with a Name Node being master and several
Data Nodes as slaves. The Name Node is responsible for allocating
physical space to store large files sent by the HDFS client. If the
client wants to retrieve data from HDFS, it sends a request to the
Name Node. The Name Nodewill seek their location in its indexing
systemand subsequently sends their address back to the client. The
Name Node returns to the HDFS client themeta data (filename, file
location, etc.) related to the stored files. A secondary Name Node
periodically saves the state of the Name Node. If the Name Node
fails, the secondary Name Node takes over automatically.

Hadoop MapReduce. There are two main versions of Hadoop
MapReduce. In the first version called MRv1, Hadoop MapReduce
is essentially based on two components: (1) the Task Tracker
that aims to supervise the execution of the Map/Reduce functions
and (2) the Job Tracker which represents the master part and
allows resource management and job scheduling/monitoring. The
Job Tracker supervises and manages the Task Trackers [21]. In the
second version of Hadoop called YARN, the two major features of
the Job Tracker have been split into separate daemons: (1) a global
Resource Manager and (2) per-application Application Master. In
Fig. 3, we illustrate the overall architecture of YARN.

As shown in Fig. 3, the Resource Manager receives and runs
MapReduce jobs. The per-application Application Master obtains
resources from the ResourceManager and works with the Node
Manager(s) to execute and monitor the tasks. In YARN, the Re-
source Manager (respectively the Node Manager) replaces the Job
Tracker (respectively the Task Tracker) [7].

Note that other well-know cluster managers are heavily
used by Big Data systems. Taking as examples Mesos [22] and
Zookeeper [23].
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Fig. 3. YARN architecture.

Mesos is an open source cluster manager that ensures a dy-
namic resources sharing and provides efficient resources manage-
ment for distributed frameworks [22]. It is based on amaster/slave
architecture. The master node relies on a daemon, called master
process. This later manages all executor daemons deployed in the
slave nodes, on which user tasks are distributed and executed.

Apache ZooKeeper is an open source and fault-tolerant coordi-
nator for large distributed systems [23]. It provides a centralized
service for maintaining the cluster’s configuration and manage-
ment. It also ensures the data or service synchronization in dis-
tributed applications. Unlike YARN or Mesos, Zookeeper is based
on a cooperative control architecture, where the same service is
deployed in all machines of the cluster. Each client or application
can request the Zookeeper service by connecting to any machine
in the cluster.

3.1.2. WordCount example with Hadoop
A WordCount program in Hadoop consists of a MapReduce job

that counts the number of occurrences of eachword in a file stored
in the HDFS. TheMap taskmaps the text data in the file and counts
each word in the data chunk provided to the Map function (see
Fig. 1). The result of the Map tasks are passed to Reduce function
which combines and reduces the data to generate the final result.

3.2. Apache spark

3.2.1. Spark system overview
Apache Spark is a powerful processing framework that provides

an ease of use tool for efficient analytics of heterogeneous data.
It was originally developed at UC Berkeley in 2009 [24]. Spark
has several advantages compared to other Big Data frameworks
like Hadoop and storm. Spark is used by many companies such
as Yahoo, Baidu, and Tencent. A key concept of Spark is Resilient
Distributed Datasets (RDDs). An RDD is basically an immutable
collection of objects spread across a Spark cluster. In Spark, there
are two types of operations on RDDs: (1) transformations and
(2) actions. Transformations consist in the creation of new RDDs
from existing ones using functions like map, filter, union and join.
Actions consist of final result of RDD computations.

In Fig. 4, we present an overview of the Spark architecture. A
Spark cluster is based on a master/slave architecture with three
main components:

• Driver Program: this component represents the slave node
in a Spark cluster. It maintains an object called SparkContext
that manages and supervises running applications.

• Cluster Manager: this component is responsible for orches-
trating the workflow of application assigned by Driver Pro-
gram toworkers. It also controls and supervises all resources
in the cluster and returns their state to the Driver Program.

Fig. 4. Spark system overview.

• Worker Nodes: eachWorker Node represents a container of
one operation during the execution of a Spark program.

Spark offers several Application Programming Interfaces
(APIs) [24]:

• SparkCore: Spark Core is the underlying general execution
engine for the Spark platform. All other features and exten-
sions are built on top of it. Spark Core provides in-memory
computing capabilities and a generalized execution model
to support a wide variety of applications, as well as Java,
Scala, and Python APIs for ease of development.

• SparkStreaming: Spark Streaming enables powerful inter-
active and analytic applications across both streaming and
historical data, while inheriting Spark’s ease of use and
fault tolerance characteristics. It can be used with a wide
variety of popular data sources including HDFS, Flume [25],
Kafka [26], and Twitter [24].

• SparkSQL: Spark offers a range of features to structure data
retrieved from several sources. It allows subsequently to
manipulate them using the SQL language [27].

• SparkMLLib: Spark provides a scalable machine learning
library that delivers both high-quality algorithms (e.g., mul-
tiple iterations to increase accuracy) and high speed (up to
100x faster than MapReduce) [24].

• GraphX: GraphX [28] is a Spark API for graph-parallel com-
putation (e.g., PageRank algorithm and collaborative fil-
tering). At a high-level, GraphX extends the Spark RDD
abstraction by introducing the Resilient Distributed Prop-
erty Graph: a directed multigraph with properties attached
to each vertex and edge. To support graph computation,
GraphX provides a set of fundamental operators (e.g., sub-
graph, joinVertices, and MapReduceTriplets) as well as
an optimized variant of the Pregel API [29]. In addition,
GraphX includes a growing collection of graph algorithms
(e.g., PageRank, Connected components, Label propagation
and Triangle count) to simplify graph analytics tasks.

3.2.2. WordCount example with Spark
In Spark, every job is modeled as a graph. The nodes of the

graph represent transformations and/or actions,whereas the edges
represent data exchange between the nodes through RDD objects.
Through Fig. 5, we show the execution plan for a WordCount job.
In the first step, the SparkContext object is used to read the input
data from any sources (e.g., HDFS) and to create an RDD. In the
second step, several operations can be applied to the RDD. In this
example, we apply a flatMap operation that receives the lines of
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Fig. 5. WordCount example with Spark.

RDD, and applies a lambda function to each line of the RDD in order
to generate a set of words. Then, amap function is applied in order
to create a set of key–value pairs, in which the key is a word and
the value is the number one. The next step consists on computing
the sum of the values of each key using the reduceByKey function.
The final results are written using the saveAsFile function.

3.3. Apache Storm

3.3.1. Storm system overview
Storm [30] is an open source framework for processing large

structured and unstructured data in real time. storm is a fault
tolerant framework that is suitable for real time data analysis,
machine learning, sequential and iterative computation. Following
a comparative study of storm and Hadoop, we find that the first is
geared for real time applications while the second is effective for
batch applications.

As shown in Fig. 6, a storm program/topology is represented by
a directed acyclic graphs (DAG). The edges of the program DAG
represent data transfer. The nodes of the DAG are divided into
two types: spouts and bolts. The spouts (or entry points) of a
storm program represent the data sources. The bolts represent the
functions to be performed on the data. Note that storm distributes
bolts across multiple nodes to process the data in parallel.

In Fig. 6, we show a storm cluster administrated by zookeeper, a
service for coordinating processes of distributed applications [31].
storm is based on two daemons called Nimbus (in master node)
and supervisor (for each slave node). Nimbus supervises the slave
nodes and assigns tasks to them. If it detects a node failure in

Fig. 6. Topology of a Storm program and architecture.

Fig. 7. WordCount example with Storm.

the cluster, it re-assigns the task to another node. Each supervisor
controls the execution of its tasks (affected by the nimbus). It can
stop or start the spots following the instructions of Nimbus. Each
topology submitted to storm cluster is divided into several tasks.

3.3.2. WordCount example with Storm
Since Storm is a framework for stream processing, we run the

WordCount example in stream mode. A Storm WordCount job
consists on a topology that combines a set of spoots and bolts,
where the spoots are used to get the data and the bolts are used
to process the data. In Fig. 7, three processing layers are used to
process the data. In the first layer, the spoots are used to read the
input data from the sources and push the data (as lines of text)
to the next layer. Then, in the next layer, a set of bolts are used
to generate a set of words from each consumed line (from the
previous layer). Finally, the last bolts are used to count for each
word its number of occurrences.

3.4. Apache Samza

3.4.1. Samza system overview
Apache Samza [32] is a distributed processing framework cre-

ated by LinkedIn to solve various kinds of stream processing re-
quirements such as tracking data, service logging, and data inges-
tion pipelines for real-time services. Since then, it was adopted
and deployed in several projects. Samza is designed to handle
large messages and to provide file system persistence for them.
It uses Apache Kafka as a distributed broker for messaging, and
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Fig. 8. Samza architecture.

Fig. 9. WordCount example with Samza.

YARN for distributed resource allocation and scheduling. YARN
resource manager is adopted by Samza to provide fault tolerance,
processor isolation, security, and resourcemanagement in the used
cluster. As illustrated in Fig. 8, Samza is based on three layers. The
first layer is devoted to streaming data and uses Apache Kafka
to manage the data flow. The second layer is based on YARN
resource manager to handle the distributed execution of Samza
jobs and to manage CPU and memory usage across a multi-tenant
cluster of machines. The processing capabilities are available in
the third layer which represents the Samza core and provides
APIs for creating and running stream tasks in cluster [32]. In this
layer, several abstract classes can be implemented by the user to
perform specific processing tasks. These abstract classes could be
implemented with MapReduce, in order to ensure the distributed
processing.

3.4.2. WordCount example with Samza
A Samza job is usally based on two parts. The first part is

responsible for data processing and the second part is responsible
for data flow transfer between the data processing units. As shown
in Fig. 9. shows the execution steps of awordCount jobwith Samza.
In the first step, the data is read from the source and sent to the first
Samza task, called splitter, through a kafka topic. In this step, each
message is split into a set of words. In the next step, another Samza
task called counter consumes the set of words, and counts for each
one the number of occurrences and generates the final result.

3.5. Apache Flink

3.5.1. Flink system overview
Flink [33] is an open source framework for processing data in

both real time mode and batch mode. It provides several bene-
fits such as fault-tolerant and large scale computation. The pro-
gramming model of Flink is similar to MapReduce. By contrast to
MapReduce, Flink offers additional high level functions such as
join, filter and aggregation. Flink allows iterative processing and
real time computation on stream data collected by different tools
such as Flume [25] and Kafka [26]. It offers several APIs on a more
abstract level allowing the user to launch distributed computation
in a transparent and easy way. Flink ML is a machine learning

Fig. 10. Flink architecture.

Fig. 11. WordCount with Flink.

library that provides a wide range of learning algorithms to create
fast and scalable Big Data applications. In Fig. 10, we illustrate the
architecture and components of Flink.

As shown in Fig. 10, the Flink systemconsists of several layers. In
the highest layer, users can submit their programs written in Java
or Scala. User programs are then converted by the Flink compiler to
DAGs. Each submitted job is represented by a graph. Nodes of the
graph represent operations (e.g., map, reduce, join or filter) that
will be applied to process the data. Edges of the graph represent
the flow of data between the operations. A DAG produced by
the Flink compiler is received by the Flink optimizer in order to
improve performance by optimizing the DAG (e.g., re-ordering of
the operations). The second layer of Flink is the cluster manager
which is responsible for planning tasks, monitoring the status of
jobs and resource management. The lowest layer is the storage
layer that ensures storage of the data tomultiple destinations such
as HDFS and local files.

3.5.2. WordCount example with Flink
In order to implement the WordCount example with Flink, we

can use the abstract functions provided by Flink such as map,
flatMap and groupBy. First, the input data is read from the data
source and stored in several dataset objects. Then, a map oper-
ation is applied to the dataset objects in order to generate key–
value pairs, with the word as a key and one as value. Then, the
groupBy function is applied to aggregate the list of key–value pairs
generated in the previous step (see Fig. 11). Finally, the number of
occurrences of each word is calculated using the sum function and
the final results are generated.

3.6. Categorization of Big Data frameworks

We present in Table 1 a categorization of the presented frame-
works according to data format, processing mode, used data
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Table 1
A comparative study of popular Big Data frameworks.

Hadoop Spark Storm Flink Samza

Data format Key–value Key–value, RDD Key–value Key–value Events

Processing mode Batch Batch and Stream Stream Batch and Stream Stream

Data sources HDFS HDFS, DBMS and
Kafka

HDFS, HBase and
Kafka

Kafka, Kinesis,
message queus,
socket streams and
files

Kafka

Programming model Map and Reduce Transformation and
Action

Topology Transformation Map and Reduce

Supported
programming
language

Java Java, Scala and
Python

Java Java Java

Cluster manager YARN Standalone, YARN
and Mesos

YARN or Zookeeper Zookeeper YARN

Comments Stores large data in
HDFS

Gives several APIs to
develop interactive
applications

Suitable for real-time
applications

Flink is an extension
of MapReduce with
graph methods

Based on Hadoop and
Kafka

Iterative
computation

Yes (by running
multiple MapReduce
jobs)

Yes Yes Yes Yes

Interactive Mode No Yes No No No

Machine learning
compatibility

Mahout SparkMLlib Compatible with
SAMOA API

FlinkML Compatible with
SAMOA API

Fault tolerance Duplication feature Recovery technique
on the RDD objects

Checkpoints Checkpoints Data partitioning

sources, programming model, supported programming languages,
cluster manager, machine learning compatibility, fault tolerance
strategy and whether the framework allows iterative computation
or not.

As shown in Table 1, Hadoop, Flink and Stormuse the key–value
format to represent their data. This ismotivated by the fact that the
key–value format allows access to heterogeneous data. For Spark,
both RDD and key–value models are used to allow fast data access.
We have also classified the studied big data frameworks into two
categories: (1) batch mode and (2) stream mode. We have shown
in Table 1 that Hadoop processes the data in batch mode, whereas
the other frameworks allow the stream processing mode. In terms
of physical architecture, we notice tha all the studied frameworks
are deployed in a cluster architecture, and each framework uses
a specified cluster manager. We note that most of the studied
frameworks useYARNas clustermanager. Froma technical point of
view, we mention that all the presented frameworks provide APIs
for several programming languages like Java, Scala and Python.
Each framework provides a set of abstract functions that are used
to define the desired computation. We also presented in Table 1
weather the studied framework provide amachine learning library
or not. We notice that Spark and Flink provide their own machine
learning libraries, while the other frameworks have some compat-
ibility with other tools, such as SAMOA for Samza and Mahout for
Hadoop.

It is important to mention that Hadoop is currently one of the
most widely used parallel processing solutions. Hadoop ecosystem
consists of a set of tools such as Flume, HBase, Hive and Mahout.
Hadoop is widely adopted in the management of large-size clus-
ters. Its YARN daemon makes it a suitable choice to configure Big
Data solutions on several nodes [34]. For instance, Hadoop is used
by Yahoo to manage 24 thousands of nodes. Moreover, Hadoop
MapReduce was proven to be the best choice to deal with text
processing tasks [35]. We notice that Hadoop can run multiple
MapReduce jobs to support iterative computing but it does not
performwell because it cannot cache intermediate data inmemory
for faster performance.

As shown in Table 1, Spark importance lies in its in-memory
features andmicro-batch processing capabilities, especially in iter-
ative and incremental processing [36]. In addition, Spark offers an

interactive tool called SparkShell which allows to exploit the Spark
cluster in real time. Once interactive applications were created,
they may subsequently be executed interactively in the cluster.
We notice that Spark is known to be very fast in some kinds of
applications due to the concept of RDD and also to the DAG-based
programming model.

Flink shares similarities and characteristics with Spark. It offers
good processing performancewhen dealingwith complex Big Data
structures such as graphs. Although there exist other solutions for
large-scale graph processing, Flink and Spark are enriched with
specific APIs and tools formachine learning, predictive analysis and
graph stream analysis [24,33].

3.7. Real-world applications

In this sub-section, we discuss the use of the studied frame-
works in several real-world applications including health core
applications, recommender systems, social network analysis and
smart cites.

3.7.1. Healthcare applications
Healthcare scientific applications, such as body area network

provide monitoring capabilities to decide on the health status of a
host. This requires deploying hundreds of interconnected sensors
over the human body to collect various data including breath,
cardiovascular, insulin, blood, glucose and body temperature [37].
However, sending and processing iteratively such stream of health
data is not supported by the original MapReduce model. Hadoop
was initially designed to process big data already available in the
distributed file system. In the literature, many extensions have
been applied to the original Mapreduce model in order to allow
iterative computing such as Haloop system [38] and Twister [8].
Nevertheless, the two caching functionalities in Haloop that allow
reusing processing data in the later iterations and make checking
for a fix-point lack efficiency. Also, since processed data may par-
tially remain unchanged through the different iterations, they have
to be reloaded and reprocessed at each iteration. This may lead to
resourcewastage, especially network bandwidth and processor re-
sources. Unlike Haloop and existing MapReduce extensions, Spark
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provides support for interactive queries and iterative computing.
RDD caching makes Spark efficient and performs well in iterative
use cases that require multiple treatments on large in-memory
datasets [36].

3.7.2. Recommendation systems
Recommender systems is another field that began to attract

more attention, especially with the continuous changes and the
growing streams of users’ ratings [39]. Unlike traditional recom-
mendation approaches that only deal with static item and user
data, new emerging recommender systemsmust adapt to the high
volume of item information and the big stream of user ratings and
tastes. In this case, recommender systems must be able to process
the big stream of data. For instance, news items are characterized
by a high degree of change and user interests vary over timewhich
requires a continuous adjustment of the recommender system. In
this case, frameworks like Hadoop are not able to deal with the
fast stream of data (e.g. user ratings and comments), which may
affect the real evaluation of available items (e.g. product or news).
In such a situation, the adoption of effective stream processing
frameworks is encouraged in order to avoid overrating or incorpo-
rating user/item related data into the recommender system. Tools
likeMahout, Flinkml and Sparkmllib include collaborative filtering
algorithms, thatmay be used for e-commerce purpose and in some
social network services to suggest suitable items to users [40].

3.7.3. Social media
Social media is another representative data source for big data

that requires real-time processing and results. Its is generated
from awide range of Internet applications andWeb sites including
social and business-oriented networks (e.g. LinkedIn, Facebook),
online mobile photo and video sharing services (e.g. Instagram,
Youtube, Flickr), etc. This huge volume of social data requires a set
of methods and algorithms related to, text analysis, information
diffusion, information fusion, community detection and network
analytics, which may be exploited to analyze and process infor-
mation from social-based sources [41]. This also requires iterative
processing and learning capabilities and necessitates the adoption
of in-stream frameworks such as Storm and Flink along with their
rich libraries.

3.7.4. Smart cities
Smart city is a broad concept that encompasses economy, gov-

ernance, mobility, people, environment and living [42]. It refers
to the use of information technology to enhance quality, perfor-
mance and interactivity of urban services in a city. It also aims to
connect several geographically distant cities [43]. Within a smart
city, data is collected from sensors installed on utility poles, water
lines, buses, trains and traffic lights. The networking of hardware
equipment and sensors is referred to as Internet of Things (IoT) and
represents a significant source of Big data. Big data technologies are
used for several purposes in a smart city including traffic statistics,
smart agriculture, healthcare, transport and many others [43]. For
example, transporters of the logistic company UPS are equipped
with operating sensors andGPSdevices reporting the states of their
engines and their positions respectively. This data is used to predict
failures and track the positions of the vehicles. Urban traffic also
provides large quantities of data that come from various sensors
(e.g., GPSs, public transportation smart cards, weather conditions
devices and traffic cameras). To understand this traffic behavior, it
is important to reveal hidden and valuable information from the
big stream/storage of data. Finding the right programming model
is still a challenge because of the diversity and the growing number
of services [44]. Indeed, some use cases are often slow such as
urban planning and traffic control issues. Thus, the adoption of
a batch-oriented framework like Hadoop is sufficient. Processing

Fig. 12. Batch Mode scenario.

urban data in micro-batch fashion is possible, for example, in
case of eGovernment and public administration services. Other use
cases like healthcare services (e.g. remote assistance of patients)
need decision making and results within few milliseconds. In this
case, real-time processing frameworks like Storm are encouraged.
Combining the strengths of the above discussed frameworks may
also be useful to deal with cross-domain smart ecosystems also
called big services [45].

4. Experiments

We have performed an extensive set of experiments to high-
light the strengths and weaknesses of popular Big Data frame-
works. The performed analysis covers scalability, impact of sev-
eral configuration parameters on the performance and resource
usage. For our tests, we evaluated Spark, Hadoop, Flink, Samza and
Storm. For reproducibility reasons, we provide information about
the implementation details and the used datasets in the follow-
ing link: https://members.loria.fr/SAridhi/files/software/bigdata/.
In this section, we describe the experimental setup and we discuss
the obtained results.

4.1. Experimental environment

All the experiments were performed in a cluster of 10machines
operatingwith LinuxUbuntu 16.04. Eachmachine is equippedwith
a 4 CPU, 8 GB of main memory and 500 GB of local storage. For our
tests, we used Hadoop 2.9.0, Flink 1.3.2, Spark 1.6.0, Samza 0.10.3
and Storm 1.1.1. All the studied frameworks have been deployed
with YARN as a cluster manager. We also varied these parameters
in order to analyze the impact of some of them on the performance
of the studied frameworks.

4.2. Experimental protocol

We consider two scenarios according to the data processing
mode (Batch and Stream) of the evaluated frameworks.

• In the Batch mode scenario, we evaluate Hadoop, Spark and
Flink while running the WordCount, K -means and PageR-
ank workloads with real and synthetic data sets. In the
WordCount application, we used tweets that are collected
by Apache Flume [25] and stored in HDFS. As shown in
Fig. 12, the collected data may come from different sources
including social networks, local files, log files and sensors.
In our case, Twitter is the main source of our collected data.
The motivation behind using Apache Flume to collect the
processed tweets is its integration facility in the Hadoop
ecosystem (especially the HDFS system). Moreover, Apache
Flume allows data collection in a distributed way and offers
high data availability and fault tolerance. We collected 10

https://members.loria.fr/SAridhi/files/software/bigdata/
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Table 2
Graph datasets.

Dataset Number of nodes Number of edges Description

G1 685,230 7,600,595 Web graph of Berkeley and Stanford
G2 875,713 5105,039 Web graph from Google
G3 325,729 1497,134 Web graph of Notre Dame
G4 281,903 2312,497 Web graph of Stanford
G5 1965,206 2766,607 RoadNet-CA
G6 3997,962 34,681,189 Com-LiveJournal
G7 4847,571 68,993,773 Soc-LiveJournal

Fig. 13. Stream mode scenario.

billions tweets and we used them to form large tweet files
with a size on disk varying from 250 MB to 100 GB of data.
For K -means, we generated a synthetic datasets containing
between 10,000 and 100 millions learning examples. For
PageRankworkload, we have used seven real graph datasets
with different numbers of nodes and edges. Table 2 shows
more details of the used datasets.
The above presented datasets have been downloaded from
the Stanford Large Network Dataset Collection (SNAP)1
and formatted as plan files in which each line represents
a link between two nodes. We implemented the PageRank
workload with Hadoop using a three-jobs workflow. In the
first job, we read data from the text file and we generated
a set of links for each page. The second job is responsi-
ble for setting an initial score for each page. The last job
iteratively computes and sorts the pages’ scores. Regard-
ing the PageRank implementation with Spark, we followed
the same execution logic as in Hadoop. We implemented
a Spark job that applies the flatMap function to generate
key–value pairs for the corresponding links, and the map
function to initialize an initial score for each page. Finally,
the reduceByKey function is used to iteratively aggregate the
page’s scores. As for the implemented Flink job, it starts by
generating the page-score pairs using the flatMap function.
Then, it iteratively aggregates the scores for each page using
the groupBy function. Finally, it computes the total score of
each page by applying the sum function.

• In the Stream mode scenario, we evaluate real-time data
processing capabilities of Storm, Flink, Samza and Spark. The
Stream mode scenario is divided into three main steps. As
shown in Fig. 13, the first step is devoted to data storage. To
do this step, we collected 1 billion tweets from Twitter using
Flume and we stored them in HDFS. The stored data is then
transferred to Kafka, a messaging server that guarantees
fault tolerance during the streaming and message persis-
tence [26]. The second step consists on sending the tweets
as streams to the studied frameworks. To allow simultane-
ous streaming of the data collected from HDFS by Storm,
Spark, Samza and Flink, we have implemented a script that
accesses the HDFS and transfers the data to Kafka. The last
step consists on executing our workloads in stream mode.

1 https://snap.stanford.edu/data/.

To do this, we have implemented an Extract, Transform
and Load (ETL) program in order to process the received
messages from Kafka. The ETL routine consists on retrieving
one tweet in its original format (JSON file), and selecting
a subset of attributes from the tweet such as hash-tag,
text, geocoordinate, number of followers, name, surname
and identifiers. All the received messages are processed by
our implemented workload. Then, they are stored using
ElasticSearch storage server, and possibly visualized with
Kibana [46]. Regarding the hardware configuration adopted
in the Stream mode, we used one machine for Kafka and
one machine for Zookeeper that allows the coordination
between Kafka and Storm. For the processing task, the re-
maining machines are devoted to access the data in HDFS
and to send it to Kafka server.

To allowmonitoring resources usage according to the executed
jobs, we have implemented a personalized monitoring tool as
shown in Fig. 14. Our monitoring solution is based on three core
components: (1) data collection module, (2) data storage module,
and (3) data visualization module. To detect the states of the
machines, we have implemented a Python script and we deployed
it in every machine of the cluster. This script is responsible for
collecting CPU, RAM,Disk I/O, andBandwidthhistory. The collected
data are stored in ElasticSearch, in order to be used in the evalua-
tion step. The stored data are used by Kibana for monitoring and
visualization purposes. For our monitoring tests, we used a dataset
of 50GB of data for theWordCountworkload, 10millions examples
for the K -means workload and the G5 dataset for the PageRank
workload. It is important tomention that existingmonitoring tools
like Ambari [47] and Hue [48] are not suitable for our case, as they
only offer real-time monitoring results.

4.3. Experimental results

4.3.1. Batch mode
In this section, we evaluate the scalability of the studied frame-

works, and we measure their CPU, RAM, disk I/O usage, as well
as bandwidth consumption while processing. We also study the
impact of several parameters and settings on the performance of
the evaluated frameworks.

https://snap.stanford.edu/data/
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Fig. 14. Architecture of our personalized monitoring tool.

Fig. 15. Impact of the size of the data on the average processing time: case of small
datasets.

Scalability
This experiment aims to evaluate the impact of the size of the

data on the processing time. In this experiment, we used two
simulations according to the size of data: (1) simulationwith small
datasets and (2) simulation with big datasets.

Experiments are conducted using the WordCount workload,
with various datasets with a size on disk varying from 250MB to 2
GB for the first simulation and from 1 GB to 100 GB for the second
simulation. Figs. 15 and 16 show the average processing time for
each framework and for every dataset. As shown in Fig. 15, Spark
is the fastest framework for all the datasets, Flink is the next and
Hadoop is the lowest. Fig. 16 shows that Spark has kept its order in
the case of big datasets andHadoop showed good results compared
to Flink. We also notice that Flink is faster than Hadoop only in the
case of very small datasets.

Compared to Spark, Hadoop achieves data transfer by accessing
the HDFS. Hence, the processing time of Hadoop is considerably
affected by the high amount of Input/Output (I/O) operations. By
avoiding I/O operations, Spark has gradually reduced the process-
ing time. It can also be observed that the computational time of
Flink is longer than those of Spark and Hadoop in the case of big
datasets. This is due to the fact that Flink sends its intermediate
results directly to the network through channels between the
workers, which makes the processing time very dependent on the
cluster’s local network. In the case of small datasets, the data is
transmitted quickly between workers. As shown in Fig. 15, Flink
is faster than Hadoop. We also notice that Spark defines optimal
time by using thememory to store the intermediate results as RDD
objects.

Fig. 16. Impact of the size of the data on the average processing time: case of big
datasets.

In the next experiment, we tried to evaluate the scalability and
the processing time of the considered frameworks based on the
size of the used cluster (the number of machines in the cluster).
Fig. 17 shows the impact of the number of the used machines
on the processing time. Both Hadoop and Flink take higher time
regardless of the cluster size, compared to Spark. Fig. 17 shows
instability in the slope of Flink due to the network traffic. In fact,
Flink jobs are modeled as a graph that is distributed on the cluster,
where nodes represent Map and Reduce functions, whereas edges
denote data flows betweenMap and Reduce functions. In this case,
Flink performance depends on the network state that may affect
intermediate results which are transferred from Map to Reduce
functions across the cluster. Regarding Hadoop, it is clear that
the processing time is proportional to the cluster size. In contrast
to the reduced number of machines, the gap between Spark and
Hadoop is reduced when the size of the cluster is large. This means
that Hadoop performs well and can have close processing time
in the case of a bigger cluster size. The time spent by Spark is
approximately between 450 s and 300 s for 2–6 nodes cluster.
Furthermore, as the number of participating nodes increases, the
processing time, yet, remains approximately equal to 290 s. This is
explained by the processing logic of Spark. Indeed, Spark depends
on the main memory (RAM) and the available resources in the
cluster. In case of insufficient resources to process the intermediate
results, Spark requires more RAM to store its intermediate results.
This is the case of 6 to 9 nodes which explains the inability to
improve the processing time even with an increased number of
participating machines.

In the case of Hadoop, intermediate results are stored on disk.
This explains the reduced execution time that reached 400 s in
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Fig. 17. Impact of the number of machines on the average processing time (Word-
Count workload with 50Gb of data).

Fig. 18. Impact of iterative processing on the average processing time.

the case of 9 nodes, compared to 600 s when exploiting only
4 nodes. To conclude, we mention that Flink allows to create a
set of channels between workers, to transfer intermediate results
between them. Flink does not perform Read/Write operations on
disk or RAM,which allows accelerating the processing times, espe-
cially when the number of workers in the cluster increases. As for
the other frameworks, the execution of jobs is influenced by the
number of processors and the amount of Read/Write operations,
on disk (case of Hadoop) and on RAM (case of Spark).

Iterative processing
In the next scenario, we tried to evaluate the studied frame-

works in the case of iterative processing with both K -means and
PageRankworkloads. In Fig. 18, both use cases measure the impact
of iterative computing on the studied frameworks. For K -means
workload, we find that Spark and Flink are similar in response time
and they are faster compared to Hadoop. This can be explained by
the fact that Hadoop writes the output results, for each iteration
in the hard disk which makes Hadoop very slow. The PageRank
workload is an iterative processing but it consumes more memory
resources, which degrade performances in the case of Spark. In this
case, Spark consumed all the available memory to create a new
RDD object. Then, Spark applies its own strategy to replace the
useless RDD and, when it does not fit in the memory, it slow down
the execution compared to both Flink and Hadoop.

Through the next experiment, we try to show the impact of the
number of iterations on the runtime. We tested our frameworks
by running K -means on 10 millions examples in the training set.
We varied the number of iteration in each simulation. As shown
in Fig. 19, with both Flink and Spark frameworks, the number
of iterations has no significant influence on the execution time.

Fig. 19. Impact of the number of iterations on the average processing time (Kmeans
workload with 10 million examples).

Fig. 20. Impact of HDFS block size on the runtime (K means workload with 10
million examples and 10 iterations).

One can conclude that the curve of Hadoop is characterized by an
exponential slopewhereas in the case of Spark and Flink the curves
are characterized by a linear slope. According to Fig. 19, we can
affirm that Hadoop is not the best choice for this kind of processing
(iterative computing).

Data partitioning
In the next experiment, we try to show the impact of data

partitioning on the studied frameworks. In our experimental setup,
we used HDFS for storage. We varied the block size in our HDFS
system and we run K -means with 10 iterations with all the used
frameworks. Fig. 20 presents the impact of the HDFS block size on
the processing time. As shown in Fig. 20, the curves are inflated
proportionally to the size of the HDFS block size for both Hadoop
and Spark, while Flink does not imply any variation in the pro-
cessing time. This can be explained by the degree of parallelism
adopted by the studied frameworks. We mention that in Hadoop,
the number of mappers is directly proportional to the input splits,
which depends on HDFS block size. When we increase the number
of splits, the degree of parallelism increases too. One possible
solution to improve the processing time is to enhance the resource
usage, but this is not always possible according to the Hadoop
curve’s behavior presented in Fig. 20. Note also that when we set
a block of HDFS whose size is less than 16 MB, the processing time
decreases as the number of input splits exceeds the number of
cores in the cluster.

For Spark, we have almost the same results compared to
Hadoop. Precisely,when Spark loads its data fromHDFS, it converts
or creates for each input split an RDD partition. In this case, the
partition makes and provides the degree of parallelism, because
Spark context program assigns for each worker an RDD partition.

As for Flink, each job is modeled as a directed graph, where
nodes are reserved for data processing and edges represent data
flow. In addition, each Flink job reserves a list of nodes in the graph
to read the input data and to write the final results. In this case, the
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Fig. 21. Impact of the cluster manager on the performance of the studied frameworks.

Fig. 22. Impact of bandwidth on the performance of the studied frameworks.

nodes responsible for reading input data, read from HDFS system
and send the data as stream flow to other processing nodes. This
mechanism makes Flink independent on the HDFS block size, as
shown in Fig. 20.

Impact of the cluster manager
In our work, we mainly used YARN as a cluster manager. We

also tried to evaluate the impact of the cluster manager on the
performance of the studied frameworks. To do this, we compared
Mesos, YARN and the standalone clusters manager of the studied
frameworks. For our tests, we run the WordCount workload with
50 GB of data, K -means with 10 million examples and Pagerank
with the G5 dataset (see Table 1). As shown in Fig. 21, the stan-
dalone mode is faster than both YARN and MESOS. In fact, the
standalone uses all the resources while executing a job, whereas
both YARN and MESOS have a scheduler to run multiple jobs
at once and share the cluster resources with all the submitted
applications [49].

Impact of bandwidth
In order to study the impact of bandwidth consumption on

the performance of the studied frameworks, we run the Word-
Count workload with 50 GB of data and we varied the bandwidth
from 128 MB to 1 GB. As shown in Fig. 22, Flink is bandwidth
dependent. In fact, when the bandwidth increases, the response
time decreases. This can be explained by the fact that each Flink
job sends the data directly from a source to a calculating unit
across the network. We also notice that Spark uses the network to,
sometimes, migrate the data to the processing unit. Hadoop allows
data locality, which means that Hadoop moves the computation
close to where the actual data resides on the node.

Impact of some configuration parameters
All the studied frameworks have a large list of configuration

parameters, which can influence their behaviors. In order to un-
derstand the impact of the configuration parameters on the per-
formance and the quality of the results, we try in this section to
study some configuration parameters mainly related to the RAM
and the number of threads in each framework.

In Hadoop, the Application Manager daemon distributes
the Map and Reduce functions on the available slots of the
cluster. To configure this aspect, we set both parameters
mapred.tasktracker.map.tasks.maximum and mapred.tasktracker.
reduce.tasks.maximum in the site-mapred.xml configuration file.
These parameters represent respectively the maximum number
of Map and Reduce tasks that will run simultaneously on a node.
Note that Spark uses executor-cores parameter and Flink uses slots
parameter to configure the number of executed threads in parallel.

In order to define the amount of memory buffer, Hadoop
uses the io.sort.mb parameter in the site-mapred.xml configuration,
Spark uses the executor-memory parameter and Flink uses the
taskManagerMemory parameter.

Flink configuration. In order to evaluate the impact of some
configuration parameters on the performance of Flink, we first
executed our workloads while varying the number of slots in each
TaskManager. Then,we varied the amount of usedmemory by each
TaskManager. Fig. 23 presents the impact of the number of slots
on the processing time of the WordCount workload. In fact, the
latter is characterized by a high CPU resource consumption, that
explains the reduction of the response time when the number of
slots increases. Note that this is not the case with K -means and
PageRank workloads. By analyzing Fig. 24, we notice that the
memory resource does not have a large effect on the processing
time in these workloads, since Flink is based on sending the output
results directly from one computing unit to another one without a
high usage of disk or memory.

Spark Configuration
The parallelism configuration in Spark requires the definition of

the number of executor-cores bymachine. In addition, thememory
management is primordial as we must configure the memory for
eachworker. These two parameters are respectively executor-cores
and executor-memory. As shown in Fig. 25, when we increase the
number of workers per machine the processing time increases too.
This behaviormay be related to thememorymanagement of Spark.
In fact, when the memory is shared and distributed on several
slots, the slot of each worker will be limited which slows down
the computing performance. In this case, it is advisable to limit
the number of workers, if the machine has a limited memory, and
to maximize it proportionally to the capacity of the memory. In
the same context, we notice the importance of the memory size
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Fig. 23. Impact of parallelism parameters on the performance of Flink.

Fig. 24. Impact of the memory size on the performance of Flink.

Fig. 25. Impact of the number of workers on the performance of Spark.

through Fig. 26. When we increase the memory the response time
decreases. This behavior is not always valid because it depends on
some other constraints such as the availability of other resources
or traffic networks.

Hadoop Configuration
To configure the number of slots on each node in a

Hadoop cluster, we must set the two following parameters:
(1) mapreduce.tasktracker.map.tasks.maximum and (2) mapre-
duce.tasktracker.reduce.tasks.maximum. These two parameters de-
fine the number of Map and Reduce functions that run simultane-
ously on each node of the cluster. These parameters maximize the
CPU usage which can improve the processing time.

Fig. 27 shows the impact of the number of slots on the perfor-
mance of Hadoop jobs. We find that the best performance is guar-
anteed when using two slots for both Map and Reduce functions.
However, this value depends on the number of cores in each node

Fig. 26. Impact of the memory size on the performance of Spark.

Fig. 27. Impact of the number of slots on the performance of Hadoop.

Fig. 28. Impact of the memory size on the performance of Hadoop.

of the cluster. In our case, we have four cores in each machine and
the best value is two slots for Map and Reduce, since the other
cores are reserved for both daemons DataNode and NodeManager.
The same behavior is observed with the WordCount workload
because this latter is based on CPU resource compared to the other
workloads. Among the characteristics of Hadoop, we note the use
of the hard disk to write intermediate results between iterations
or between Map and Reduce functions. Before writing data to the
disk, Hadoop writes its intermediate data in a memory buffer. This
memory can be configured through the io.sort.mb parameter. In
order to evaluate the impact of this parameter, we varied its values
from20MB to120MBas illustrated in Fig. 28. It is also clear that the
processing time decreases subsequently and reaches 100MBwhen
we increase the value of io.sort.mb parameter. A level of stability
is achieved when the satisfaction of the computing units by this
resource is guaranteed.
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Fig. 29. CPU resource usage in Batch mode scenario (WordCount workload with 50
GB of data).

Resources consumption
CPU consumption
As shown in Fig. 29, CPU consumption is approximately in direct

ratio with the problem scale. However, the slopes of Flink (see
Fig. 29) are not larger than those of Spark andHadoopbecause Flink
partially exploits the disk and the memory resources, unlike Spark
and Hadoop. Since Hadoop was initially modeled to frequently use
the hard disk, the amount of Read/Write operations of the obtained
processing results is high. Hence, Hadoop CPU consumption is im-
portant. In contrast, Spark mechanism relies on the memory. This
approach is not costly in terms of CPU consumption. Fig. 29 also
showsHadoopCPUusage. The processed data are loaded in the first
20 s. The next 220 s are devoted to execute the Map function. The
reduce function is started in the last 180 s. The gaps in CPU usage
(see Fig. 29) is explained by the high number of Map functions
(determined according to the data size and block size in HDFS),
compared to the number of Reduce functions. When a Reduce
function receives the totality of its key–value pairs (intermediate
results generated by Map functions on the disk) assigned by the
Application Manager, it starts the processing immediately. In the
remaining processing time, Hadoop writes the final results on disk
through Reduce functions. As shown in Fig. 29, the CPU usage is
low because we have a single Reduce function (only one slot for
writing the final results).

As for Spark CPU usage, Spark loads data from the disk to the
memory during the first 20 s. The next 20 s are triggered to process
the loaded data. In the second half time execution, each Reduce
function processes its own data that come from theMap functions.
In the last 10 s, Spark combines all the results of the Reduce
functions. Although Flink execution time is higher than Spark and
Hadoop, its overall processor consumption is high compared to
Spark and Hadoop. Indeed, Flink divides the processing task into
three steps. The first step is used to read the data from the source.
The second step is used to process the data. The third step consists
on writing the final results in the desired location. This behavior
explains the use of the processor since the slots always listen to
the data streams from the data sources. From Fig. 29, it is clear that
Flink maximizes the utilization of the CPU resource compared to
Hadoop and Spark.

RAM consumption
Fig. 30 plots the memory consumption of the studied frame-

works. The RAM usage rate is almost the same for Flink and Spark
especially in theMap phase.When the data fit into cache, Spark has
a bandwidth between 35 GB and 40 GB. We notice that Spark logic
depends mainly on RAM utilization. That is why, during 78.57% of
the total job execution time (120 s), the RAM is almost occupied
(3.6 GB per node). Regarding Hadoop, only 45.83% of the execution
time (180 s) is used, and 35 GB of memory have been used during
this time, where 2.6 GB in each node is reserved to the daemons of
Hadoop.

Another explanation of the fact that Spark RAM consumption
is smaller than Hadoop is the data compression policies during

Fig. 30. RAM consumption in Batch mode scenario (WordCount workload with 50
GB of data).

Fig. 31. Disk I/O usage in Batch mode scenario (WordCount workload with 50 GB of
data).

data shuffle process. By default, Spark enabled the data compres-
sion during shuffle but Hadoop does not. Regarding Flink, RAM
is occupied during 70% of the total execution time (280 s), with
3.6 GB reserved for the daemons responsible for managing the
cluster. The average memory usage is 40 GB. This is explained
by the gradual triggering of Reduce functions after receiving the
intermediate results that came from Map functions. Flink models
each task as a graph, where its constituting nodes represent a
specific function and edges denote the flow of data between those
nodes. Intermediate results are sent directly fromMap to groupBy
functions without massively using RAM and disk resources.

Disk I/O usage
Fig. 31 shows the amount of disk usage by the studied frame-

works. We find that Hadoop frequently accesses the disk, as the
amount of write operations is about 90 MB/s. This is not the case
for Spark (about 30 MB/s) as this framework is memory-oriented.
As for Flink which shares a similar behavior with Spark, the disk
usage is very low compared to Hadoop (about 50 MB/s). Indeed,
Flink uploads, first, the required processing data to the memory
and, then, distributes them among the candidate workers.

Bandwidth resource usage
As shown in Fig. 32, Hadoop has a best traffic utilization. As

for Flink, it surpasses both Spark and Hadoop in traffic utilization.
The amount of data exchanged per second is high compared to
Spark and Hadoop (37 MB/s for Hadoop, 120 MB/s for Flink, and
70 MB/s for Spark). The massive use of bandwidth resources could
be attributed to the streaming of data in Flink jobs between data
source and data processing nodes.

As mentioned before, Flink sends directly the outputs of the
Map functions to the next functions through channels of data
transmission between these functions, which explains the very
high utilization of bandwidth. As for Spark, the data compression
policies during the data shuffle process allow this framework to
record intermediate data in temporal files and compress them be-
fore their submission from one node to another. This has a positive
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Fig. 32. Bandwidth resource usage in Batch mode scenario (WordCount workload
with 50 GB of data).

Fig. 33. Impact of the window time on the number of processed events (100 KB per
message).

impact on bandwidth resource usage as the intermediate data are
transferred in a reduced size. Regarding Hadoop, the data place-
ment strategy helps the latter to optimize the use of bandwidth
resource. It is also important to mention that, when a MapReduce
job is submitted to the cluster, the resource manager assigns the
Map functions to the nodes of the cluster while minimizing the
data exchange between the nodes.

4.3.2. Stream mode
In stream experiments, we measure CPU, RAM, disk I/O usage

and bandwidth consumption of the studied frameworks while
processing tweets, as described in Section 4.2.

The goal here is to compare the performance of the stud-
ied frameworks according to the number of processed messages
within a period of time. In the first experiment, we send a tweet of
100 KB (in average) per message. Fig. 33 shows that Flink, Samza
and Stormhavebetter processing rates compared to Spark. This can
be explained by the fact that the studied frameworks use different
values of window time. The values of window time of Flink, Samza
and Storm are much smaller than that of Spark (milliseconds vs
seconds).

In the next experiment, we changed the sizes of the processed
messages. We used 5 tweets per message (around 500 KB per
message). The results presented in Fig. 34 show that Samza and
Flink are very efficient compared to Spark, especially for large
messages.

CPU consumption
Results have shown that the number of events processed by

Storm (10,085) is close to that processed by Flink (8320) despite
the larger-size nature of events in Flink compared to Samza and
Storm. In fact, the window time’s configuration of Storm allows
to rapidly deal with the incoming messages. Fig. 35 plots the CPU
consumption rate of Flink, Storm and Spark.

Fig. 34. Impact of the window time on the number of processed events (500 KB per
message).

As shown in Fig. 35, Flink CPU consumption is low compared to
Spark, Samza and Storm. Flink exploits about 10% of the available
CPU to process 8320 events, whereas Storm CPU usage varies
between 15% and 18% when processing 10,085 events. However,
Flink may provide better results than Storm when CPU resources
are more exploited. In the literature, Flink is designed to process
large messages, unlike Storm which is only able to deal with
small messages (e.g., messages coming from sensors). Unlike Flink,
Samza and Storm, Spark collects events’ data every second andper-
forms processing task after that. Hence, more than one message is
processed, which explains the high CPU usage of Spark. Because of
Flink’s pipeline nature, each message is associated to a thread and
consumed at each window time. Consequently, this low volume
of processed data does not affect the CPU resource usage. Samza
exploits about 55% of the available CPU because it is based on the
concept of virtual cores and, each job or partition is assigned to a
number of virtual cores. So, we can deploy several threads (one for
each partition), which explains the intensive CPU usage compared
to the other frameworks.

RAM consumption
Fig. 36 shows the cost of event stream processing in terms of

RAM consumption. Spark reached 6 GB (75% of the available re-
sources) due to its in-memory behavior and its ability to perform in
micro-batch (process a group of messages at a time). Flink, Samza
and Storm did not exceed 5 GB (around 61% of the available RAM)
as their stream mode behavior consists in processing only single
messages. Regarding Spark, the number of processed messages
is small. Hence, the communication frequency with the cluster
manager is low. In contrast, the number of processed events is
high for Flink, Samza and Storm, which explains the important
communication frequency between the frameworks and their Dae-
mons (i.e. between Storm and Zookeeper, or between Flink and
Yarn). Indeed, the communication topology in Flink is predefined,
whereas the communication topology in the case of Storm is dy-
namic because Nimbus (the master component of Storm) searches
periodically the available nodes to perform processing tasks.

Disk R/W usage
Fig. 37 depicts the amount of disk usage by the studied frame-

works. The curves denote the amount of Read/Write operations.
The amounts of Write operations in Flink and Storm are almost
close. Flink, Samza and Storm frequently access the disk and are
faster than Spark in terms of the number of processedmessages. As
discussed in the above sections, Spark framework is an in-memory
framework which explains its lower disk usage.

Bandwidth resource usage
As shown in Fig. 38, the amount of data exchanged per second

varies between 375 KB/s and 385 KB/s in the case of Flink, and
varies between 387 KB/s and 390 KB/s in the case of Storm and
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Fig. 35. CPU consumption in Stream mode scenario (with 100 KB per message use case).

Fig. 36. RAM consumption in Stream mode scenario (with 100 KB per message).

Fig. 37. Disk usage in Stream mode scenario (with 100 KB per message).

Fig. 38. Traffic bandwidth in Stream mode scenario (with 100 KB per message use case).
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about 400Mb/s in the case of Samza. This amount is high compared
to Spark as its bandwidth usage did not exceed 220KB/s. This is due
to the reduced frequency of serialization andmigration operations
between the cluster nodes, as Spark processes a group of messages
at each operation. Consequently, the amount of exchanged data is
reduced, while Storm, Samza and Flink are designed for the stream
processing.

4.4. Summary of the evaluation

From the above presented experiments, it is clear that Spark
can deal with large datasets better than Hadoop and Flink. Al-
though Spark is known to be the fastest framework due to the
concept of RDD, it is not a suitable choice in the case of intensive
memory processing tasks. Indeed, intensive memory applications
are characterized by the massive use of memory (creation of RDD
objects at each transformation operation). This process degrades
the performance of Spark since the SparkContext will be led to find
the unused RDD and remove them in order to get more free mem-
ory space. The carried experiments in this work also indicate that
Hadoop performs well on the whole. However, it has some limi-
tations regarding the writing of intermediate results in the hard
disk and requires a considerable processing time when the size of
data increases, especially in the case of iterative applications. Ac-
cording to the resource consumption results in batchmode, we can
conclude that Flink maximizes the use of CPU resources compared
to both frameworks Spark and Hadoop. This good exploitation
is relative to the pipeline technique of Flink which minimizes
the period of idle resources. However, it is characterized by high
demands on network resource compared to Hadoop. In fact, this
resource consumption explains why Flink is faster than Hadoop. In
the stream scenario, Flink, Samza and Storm are quite similar in
terms of data processing. In fact, they are originally designed for
stream processing. We also notice that Flink is characterized by
its low latency, since it is based on pipe-lined processing and on
message passing processing technique, whereas Spark is based on
Java Virtual Machine (JVM) and belongs to the category of batch
mode frameworks. Each Samza job is divided into one or more
partitions and each partition is processed in an independently
container or executor, which shows best results with large stream
messages. Another important aspect to be consideredwhile tuning
the used framework is the cluster manager. In the standalone
mode, the resource allocation in Spark and Flink are specified by
the user during the submission of its jobs whereas using a cluster
manager such as Mesos or YARN, the allocation of the resources is
done automatically.

5. Best practices

In the previous section, two major processing approaches
(batch and stream) were studied and compared in terms of speed
and resource usage. Choosing the right processing model is a chal-
lenging problem, given the growing number of frameworks with
similar and various services [50]. This section aims to shed light on
the strengths of the above discussed frameworks when exploited
in specific fields including stream processing, batch processing,
machine learning and graph processing.

5.1. Stream processing

As the world becomes more connected and influenced by mo-
bile devices and sensors, stream computing emerged as a basic
capability of real-time applications in several domains, including
monitoring systems, smart cities, financial markets and manufac-
turing [36]. However, this flood of data that comes from various
sources at high speed always needs to be processed in a short time

interval. In this case, Storm and Flink may be considered, as they
allow pure streamprocessing. The design of in-stream applications
needs to take into account the frequency and the size of incoming
events data. In the case of stream processing, Apache Storm is
well-known to be the best choice for the big/high stream oriented
applications (billions of events per second/core). As shown in the
conducted experiments, Storm performs well and allows resource
saving, even if the stream of events becomes important.

5.2. Micro-batch processing

In case of batch processing, Spark may be a suitable framework
to deal with periodic processing tasks such as Web usage mining,
fraud detection, etc. In some situations, there is a need for a pro-
gramming model that combines both batch and stream behavior
over the huge volume/frequency of data in a lambda architec-
ture. In this architecture, periodic analysis tasks are performed in
a larger window time. Such behavior is called micro-batch. For
instance, data produced by healthcare and IoT applications often
require combining batch and streamprocessing. In this case frame-
works like Flink and Spark may be good candidates [51]. Spark
micro-batch behavior allows to process datasets in larger window
times. Spark consists of a set of tools, such as SparkMLLIB and Spark
Stream that provide rich analysis functionalities in micro-batch.
Such behavior requires regrouping the processed data periodically,
before performing analysis task.

5.3. Machine learning algorithms

Machine learning algorithms are iterative in nature [51]. They
are widely used to process huge amounts of data and to exploit the
opportunities hidden in big data [52]. Most of the above discussed
frameworks support machine learning capabilities through a set
of libraries and APIs. FlinkML library includes implementations of
K -means clustering algorithm, logistic regression, and Alternating
Least Squares (ALS) for recommendation [53]. Spark has more effi-
cient set of machine learning algorithms such as Spark MLlib [54]
and MLI [55]. Spark MLlib is a scalable and fast library that is
suitable for general needs and most areas of machine learning. Re-
garding Hadoop framework, ApacheMahout aims to build scalable
and performant machine learning applications on top of Hadoop.

5.4. Big graph processing

The field of large graph processing has attracted considerable
attention because of its huge number of applications, such as the
analysis of social networks [56], Web graphs [57] and bioinfor-
matics [58,59]. It is important to mention that Hadoop is not the
optimal programming model for graph processing [60]. This can
be explained by the fact that Hadoop uses coarse-grained tasks to
do its work, which are too heavyweight for graph processing and
iterative algorithms [51]. In addition, Hadoop cannot cache inter-
mediate data in memory for faster performance. We also notice
that most of Big Data frameworks provide graph-related libraries
(e.g., Graphx [28] with Spark and Flinkgelly [61] with Flink). More-
over, many graph processing systems have been proposed [62].
Such frameworks include Pregel [29], Graphlab [63], Bladyg [64]
and Trinity [65].

6. Conclusions

In this work, we surveyed popular frameworks for large-scale
data processing. After a brief description of the main paradigms
related to Big Data problems, we presented an overview of the Big
Data frameworks Hadoop, Spark, Storm and Flink. We presented
a categorization of these frameworks according to some main
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features such as the used programming model, the type of data
sources, the supported programming languages and whether the
framework allows iterative processing or not. We also conducted
an extensive comparative study of the above presented frame-
works on a cluster of machines and we highlighted best practices
while using the studied Big Data frameworks.
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