چکیده
داده کاوی داده های هوشمند از داده های بزرگ جمع آوری شده از اینترنت اشیا به منظور بهتر کردن زندگی بشر با مجتمع سازی دستگاه های فیزیکی در فضای اطلاعات است. یکی از مهمترین روش های خوشه بندی برای یادگیری داده هوشمند، الگوریتم میانگین مرکز فازی (FCM) است که هر شیء را با محاسبه ماتریس عضویت به چندین گروه اختصاص می دهد. با این حال هر شیء داده بزرگ تعداد زیادی ویژگی دارد که چالش بزرگی برای خوشه بندی زمان واقعی داده بزرگ IoT از طریق FCM را به همراه دارد. در این مقاله یک روش میانگین مرکز فازی کارآمد بر اساس تجزیه چند متغیری استاندارد تانسور را برای خوشه بندی داده های بزرگ در اینترنت اشیا معرفی می کنیم. در طرح ارائه شده، الگوریتم میانگین مرکز فازی معمول توسط تابع دوسویی به الگوریتم میانگین مرکز فازی تانسور مرتبه بالا (HOFCM) تبدیل می شود. به علاوه تجزیه چند متغیری کانونیک تانسور برای کاهش ویژگی های هر شیء به کار می رود تا بازده خوشه بندی بهبود یابد. در آخر آزمایش های زیادی برای مقایسه طرح توسعه داده شده با الگوریتم میانگین مرکز فازی معمول روی دو مجموعه داده بزرگ IoT شامل eWSN و eGSAD نسبت به صحت خوشه بندی و بازده خوشه بندی انجام می شود. نتایج بیان می کنند که طرح توسعه داده شده به طور قابل توجهی، بازده خوشه بندی بالاتری دارد و صحت خوشه بندی آن به میزان کمی کمتر از الگوریتم معمول است که توانایی طرح ارائه شده برای یادگیری داده هوشمند از داده بزرگ IoT را نشان می دهد.
معلومات اولیه
معلومات اولیه شامل روش میانگین مرکز فازی معمول (FCM) و تجزیه چند متغیری کانونیک تانسور هستند که برای طرح معرفی شده در این بخش ارائه می شوند. ابتدا FCM و سپس تجزیه چند متغیری کانونیک تانسور معرفی می شوند.
روش میانگین های مرکز فازی (FCM)
روش استاندارد میانگین مرکز فازی در ابتدا توسط بیدک و همکارانش [7] معرفی شد. با فرض اینکه X= {x1, x2, . . . , xN} مجموعه داده ای است که باید خوشه بندی شود و هر شیء m ویژگی دارد، روش میانگین مرکز فازی استاندارد هر شیء xi(1 ≤ i ≤ N) را به c خوشه با ماتریس عضویت c×N با نام U = {uij} اختصاص می-دهد که در آن uij بیانگر عضویت j-امین شیء متعلق به گروه i-ام است. به طور خاص روش میانگین مرکز فازی استاندارد با معادله زیر بیان می شود:
بنابراین هدف روش میانگین مرکز فازی استاندارد محاسبه ماتریس عضویت و محاسبه مراکز خوشه V =
{v1, v2, . . . , vc} داده شده در مجموعه داده X است. تا کنون روش میانگین مرکز فازی استاندارد به طور تصادفی به ماتریس عضویت مقدار اولیه می¬دهد و سپس ماتریس عضویت و مراکز خوشه را با کمینه کردن تابع هدف Jm به صورت زیر به روز رسانی می¬کند: