تلفن: ۰۴۱۴۲۲۷۳۷۸۱
تلفن: ۰۹۲۱۶۴۲۶۳۸۴

ترجمه مقاله طبقه بندی و توسعه ابزار برای بیماری های قلبی با استفاده از یادگیری ماشین – نشریه IEEE

عنوان فارسی: طبقه بندی و توسعه ابزار برای بیماری های قلبی (تصویر های MRI) با استفاده از یادگیری ماشین
عنوان انگلیسی: Classification and development of tool for heart diseases (MRI images) using machine learning
تعداد صفحات مقاله انگلیسی : 6 تعداد صفحات ترجمه فارسی : 15 (1 صفحه رفرنس انگلیسی)
سال انتشار : 2016 نشریه : آی تریپل ای - IEEE
فرمت مقاله انگلیسی : pdf و ورد تایپ شده با قابلیت ویرایش فرمت ترجمه مقاله : pdf و ورد تایپ شده با قابلیت ویرایش
فونت ترجمه مقاله : بی نازنین سایز ترجمه مقاله : 14
نوع مقاله : ISI نوع ارائه مقاله : کنفرانس
کد محصول : 10290 وضعیت ترجمه : انجام شده و آماده دانلود در فایل ورد و pdf
محتوای فایل : zip حجم فایل : 1.79Mb
رشته و گرایش های مرتبط با این مقاله: مهندسی پزشکی و پزشکی، قلب و عروق، پردازش تصاویر پزشکی، سایبرنتیک پزشکی
کنفرانس: چهارمین کنفرانس بین المللی محاسبات شبکه، موازی ، توزیع شده - Fourth International Conference on Parallel
دانشگاه: دانشکده فنی و مهندسی، دانشگاه شولینی، هند
کلمات کلیدی: cp-charm، پروانه سلولی، هیپوکسیزی جهانی، استخراج ویژگی، MRI، پیش بینی
کلمات کلیدی انگلیسی: cp-charm - cellprofiler - Global hypokenesia - feature extraction - MRI - prediction
وضعیت ترجمه عناوین تصاویر و جداول: ترجمه شده است ✓
وضعیت ترجمه متون داخل تصاویر و جداول: ترجمه نشده است ☓
وضعیت ترجمه منابع داخل متن: درج نشده است ☓
ضمیمه: ندارد
بیس: نیست ☓
مدل مفهومی: ندارد ☓
پرسشنامه: ندارد ☓
متغیر: دارد ✓
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
رفرنس در ترجمه: در انتهای مقاله درج شده است
doi یا شناسه دیجیتال: https://doi.org/10.1109/PDGC.2016.7913149
ترجمه این مقاله با کیفیت عالی آماده خرید اینترنتی میباشد. بلافاصله پس از خرید، دکمه دانلود ظاهر خواهد شد. ترجمه به ایمیل شما نیز ارسال خواهد گردید.
فهرست مطالب

چکیده

1- مقدمه

2- مواد و روش های مورد استفاده

الف)جمع آوری داده ها

ب) استخراج ویژگی

ج) تولید مدل

د) اعتبار سنجی مدل

ه) اجرا

3- نتایج

3- مباحث

4- جمع بندی

نمونه متن انگلیسی

Abstract

Heart diseases are one of the major killers worldwide. Early detection of heart disease such as Global Hypokinesia can reduce this global burden. Computational method has potential to predict disease in early stages automatically and especially helpful in resources limited countries. Computational method to predict global hypokinesia based on confirms cases of global hypokinesia through MRI was developed. Almost all feature extraction method was used on MRI images and model was generated on merged and different images separately. High accuracy of model independent test set justified our approaches and reliability of model. The newly developed was implemented in python and available for open use.

نمونه متن ترجمه

چکیده

بیماری های قلبی یکی از مهم ترین عوامل مرگ و میر در جهان هستند. شناسایی سریع و اولیه ی بیماری های قلبی مانند هیپوکینزی میتواند موجب کاهش بار جهانی بیماری های قلبی و عروقی شود. روش های محاسباتی این پتانسیل را دارند تا بیماری را در مراحل اولیه به صورت خودکار پیش بینی کرده و به خصوص در کشور هایی که منابع محدودی را در اختیار دارند، این روش میتواند بسیار مفید باشد. روش های محاسباتی برای پیش بینی سراسری هیپوکینزی مبتنی بر موارد تاییدی هیپوکینزی سراسری از طریق MRI ، توسعه پیدا کرده است. تقریبا تمام استخراج ویژگی ها برای تصویر های MRI مورد استفاده قرار گرفته و این مدل بر روی تصویر های ترکیبی و مختلف، به صورت مجزا اعمال شده است. تست های مدل مستقل و صحت بالا ، روش های مورد استفاده ی مار را توجیه کرده و قابلیت اعتماد روش را نشان میدهد. این روش های توسعه یافته ی جدید، بر روی زبان پیتون نوشته شده است و برای کاربرد های متن باز، فراهم شده است.