منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی پیش بینی قیمت سهام با استفاده از رگرسیون بردار پشتیبانی در قیمت لحظه آخر - الزویر 2018

عنوان فارسی
پیش بینی قیمت سهام با استفاده از رگرسیون بردار پشتیبانی در قیمت لحظه آخر و روزانه
عنوان انگلیسی
Stock Price Prediction Using Support Vector Regression on Daily and Up to the Minute Prices
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
37
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E8619
رشته های مرتبط با این مقاله
علوم اقتصادی
گرایش های مرتبط با این مقاله
اقتصادسنجی، اقتصاد مالی و اقتصاد پولی
مجله
مجله امور مالی و علوم داده - The Journal of Finance and Data Science
دانشگاه
University of Brasília - Department of Economics - Campus Darcy Ribeiro - Brasília - Federal District - Brazil
کلمات کلیدی
پیش بینی، بازار سهام، یادگیری ماشین، رگرسیون بردار پشتیبانی، تجارت فرکانس بالا
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


The purpose of predictive stock price systems is to provide abnormal returns for financial market operators and serve as a basis for risk management tools. Although the Efficient Market Hypothesis (EMH) states that it is not possible to anticipate market movements consistently, the use of computationally intensive systems that employ machine learning algorithms is increasingly common in the development of stock trading mechanisms. Several studies, using daily stock prices, have presented predictive system applications trained on fixed periods without considering new model updates. In this context, this study uses a machine learning technique called Support Vector Regression (SVR) to predict stock prices for large and small capitalisations and in three different markets, employing prices with both daily and up-to-the-minute frequencies. Prediction errors are measured, and the model is compared to the random walk model proposed by the EMH. The results suggest that the SVR has predictive power, especially when using a strategy of updating the model periodically. There are also indicative results of increased predictions precision during lower volatility periods.

نتیجه گیری

5. Conclusion


Developing predictive price models for the stock market is challenging, but it is an important task when building profitable financial market transaction strategies. Computationally intensive methods, using past prices, are developed to facilitate better management of market risk for investors and speculators. Of the machine learning techniques available, this study uses SVR and measures its performance on various Brazilian, American and Chinese stocks with different characteristics, for example, small cap or blue chip. The predictive variables are calculated using TA indicators on asset prices. The results show the magnitude of the mean squared errors for the three common kernels in the literature, using specific algorithm training strategies with different price frequencies of days and minutes. The results are contrasted with those of a random walk-based model.


بدون دیدگاه