منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی تشخیص تصویر نمونه کوچک با استفاده از شبکه عصبی پیچشی بهبود یافته - الزویر 2018

عنوان فارسی
تشخیص تصویر نمونه کوچک با استفاده از شبکه عصبی پیچشی بهبود یافته
عنوان انگلیسی
Small sample image recognition using improved Convolutional Neural Network
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
8
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E8770
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
هوش مصنوعی، شبکه های کامپیوتری
مجله
مجله ارتباط بصری و نمایندگی تصویر - Journal of Visual Communication and Image Representation
دانشگاه
School of Computer and Information - Hefei University of Technology - Hefei - China
کلمات کلیدی
تشخیص تصویر، شبکه عصبی پیچشی (CNN)، شبکه عصبی رگرسیون عمومی (GRNN)، نمونه کوچک، رمان واقعی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

ABSTRACT


In recent years, with the raise of the neural network and deep learning, significant progress has been achieved in the field of image recognition. Convolutional Neural Network (CNN) has been widely used in multiple image recognition tasks, but the recognition accuracy still has a lot of room for improvement. In this paper, we proposed a hybrid model CNN-GRNN to improve recognition accuracy. The model uses CNN to extract multilayer image representation and it uses General Regression Neural Network (GRNN) to classify image using the extracted feature. The CNN-GRNN model replace Back propagation (BP) neural network inside CNN with GRNN to improve generalization and robustness of CNN. Furthermore, we validate our model on the Oxford-IIIT Pet Dataset database and the Keck Gesture Dataset, the experiment result indicate that our model is superior to Gray Level Co-occurrency (GLCM),HU invariant moments, CNN and CNN_SVM on small sample dataset. Our model has favorable real-time characteristic at the same time.

نتیجه گیری

5. Summary


In this paper, we had introduced a hybrid model based on CNN for image classification. As CNN can extract features from images, we then use General Regression Neural Network with powerful function approximation to recognize image according to extracted representations. CNN can learn image multilayer high-dimensional feature itself which is superior to other traditional methods. And General Regression Neural Network we used can strengthen the classification and processing capacity of CNN, and it can make the model converging more quickly. Experiments show that our model is effective on image recognition. However, CNN model contains a large number of weights which leads to a large number of iterations, so it is time-consuming. Therefore, we will pay attention to optimize the training process of our model in the future.


بدون دیدگاه