دانلود رایگان مقاله پیش بینی فعالیت قتصادی فنلاندی با استفاده از داده در سطح بنگاه

عنوان فارسی
پیش بینی فعالیت های اقتصادی فنلاندی با استفاده از داده ها در سطح بنگاه
عنوان انگلیسی
Predicting Finnish economic activity using firm-level data
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
10
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E4031
رشته های مرتبط با این مقاله
اقتصاد
گرایش های مرتبط با این مقاله
اقتصاد مالی
مجله
مجله بین المللی پیش بینی - International Journal of Forecasting
دانشگاه
دانشگاه هلسینکی، فنلاند
کلمات کلیدی
داده های سطح شرکت، پیش بینی، مدل عامل، داده های زمان واقعی، مجموعه داده های بزرگ
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


In this paper, we compute flash estimates of Finnish monthly economic activity using firmlevel data. We use a two-step procedure where the common factors extracted from the firm-level data are subsequently used as predictors in nowcasting regressions. The results show that large firm-level datasets are useful for predicting aggregate economic activity in a timely fashion. The proposed factor-based nowcasting model leads to a superior outof-sample nowcasting performance relative to the benchmark autoregressive model, even for early nowcasts. Moreover, we find that the quarterly GDP flash estimates that we construct provide a useful real-time alternative to the current official estimates, without any substantial loss of nowcasting accuracy. © 2015 Published by Elsevier B.V. on behalf of International Institute of Forecasters.

نتیجه گیری

5. Conclusions


In this study, we have used a large dataset of Finnish firm-level turnovers to compute factors which are in turn included in a predictive regression for nowcasting monthly economic activity. We compute the factors using two methods. In the first method, we simply eliminate the firms that present jagged edges or missing values, thus ensuring that the turnover dataset is balanced, and use a simple principal component estimator to extract the factors. We call this routine a balanced method. In our other method, we perform missing value imputation using the factor model and the regularized EM algorithm proposed by Josse and Husson (2012a). This method allows us to use all of the firms in the dataset, but is also computationally more intensive than the balanced method.


بدون دیدگاه