منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی بهینه سازی صرفه جویی در انرژی قطار بر اساس الگوریتم ژنتیک نسبت طلایی - IEEE 2018

عنوان فارسی
بهینه سازی صرفه جویی در انرژی قطار بر اساس الگوریتم ژنتیک نسبت طلایی
عنوان انگلیسی
Optimization of train energy saving based on golden ratio genetic algorithm
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
6
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
کد محصول
E8517
رشته های مرتبط با این مقاله
مهندسی برق
گرایش های مرتبط با این مقاله
مهندسی الکترونیک، مهندسی کنترل، مکاترونیک
مجله
کنفرانس سالانه علمی جوانان انجمن چینی از اتوماسیون - Youth Academic Annual Conference of Chinese Association of Automation
دانشگاه
Faculty of Information Technology - Beijing Laboratory of Urban Rail Transit - Beijing University of Technology - China
کلمات کلیدی
قطار مترو؛ بهینه سازی صرفه جویی در انرژی؛ الگوریتم ژنتیک؛ بهینه مطلوب؛ نسبت طلایی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


In order to reduce the energy consumption of train operation, an optimization method based on genetic algorithm of golden section is proposed. Firstly, the Multi-particle train model is established. Secondly, the optimal operation strategy of subway trains is analyzed according to different ramps. Then, a golden section genetic algorithm (GR-GA) is proposed to solve the problem that genetic algorithm is easy to fall into local optimum. A golden section genetic algorithm (GR-GA) is proposed to search for the optimal transfer position of train and the best adaptive point of searching crossover and mutation operator with golden ratio is introduced, which improves the local optimization ability and convergence performance. Taking Yizhuang line as a simulation case, the results show that the proposed algorithm has a better optimization effect.

نتیجه گیری

V.CONCLUSION


In this paper, energy consumption of the train is regarded as the objective. Considering speed limit and the slope, the optimal controlling strategy of the train on different slopes is analyzed. Based on this, a golden section genetic algorithm is proposed to find out the position of the optimal operating point of the train, so as to obtain the optimal train controlling sequence. The effectiveness of the algorithm is verified by Matlab simulation. The results show that the algorithm converges faster than the traditional genetic algorithm and the reduction of the energy consumption is significant. To study the optimization of multi-objective of train is our next research direction.


بدون دیدگاه