ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
Abstract
In Internet of Things, the resource distribution is random in space, which leads to the poor precision ratio of the cluster resource indexing of Internet of Things, so in order to improve the information fusion and dispatching ability of Internet of Things, it is necessary to optimize the resource indexing of Internet of Things. Therefore, an algorithm for cluster resource indexing of Internet of Things based on improved ant colony algorithm is proposed in this paper. Directed graph models are used to construct a distribution structure model of cluster resource indexing nodes of Internet of Things, carry out semantic association feature extraction in the cluster resource storage information flow of Internet of Things. And the improved ant colony algorithm is used to crawl and capture cluster information in Internet of Things. According to the ant colony trajectory information, the velocity and position of the cluster resource indexing of Internet of Things are updated, and the balanced ant colony algorithm is used to carry out the global search and local search to resources and initialize the clustering center, and the target function of the cluster resource indexing of Internet of Things is constructed and the optimization parameter is solved with the constraint condition of the minimum variance of the whole fitness. The strong ability of global optimization of the ant colony algorithm is used to realize resource indexing optimization. Simulation results show that the improved algorithm can quickly realize resource index convergence, effectively escape local minimum points, and has strong global search ability and relatively high resource indexing precision ratio.
5 Conclusion
In this paper, the cluster resource optimum indexing of Internet of Things is studied, and an algorithm for cluster resource indexing of Internet of Things based on improved ant colony algorithm is proposed. Directed graph models are used to construct a distribution structure model of cluster resource indexing nodes of Internet of Things, carry out semantic association feature extraction in the cluster resource storage information flow of Internet of Things. And the improved ant colony algorithm is used to crawl and capture cluster information in Internet of Things. According to the ant colony trajectory information, the velocity and position of the cluster resource indexing of Internet of Things are updated, and the balanced ant colony algorithm is used to carry out global search and local search to resources. The target function of the cluster resource indexing of Internet of Things is constructed and the optimization parameter is solved with the constraint condition of the minimum variance of the whole fitness. The strong ability of global optimization of the ant colony algorithm is used to realize resource optimum indexing. This method is strong in global optimization and good in convergence in cluster resource indexing of Internet of Things, which improves the indexing ability to target resources, and it has a good application value in the information platform construction and resource scheduling of Internet of Things.