دانلود رایگان مقاله انگلیسی بهینه سازی شاخص گذاری منابع خوشه ای اینترنت اشیا بر اساس الگوریتم کلونی مورچه - اشپرینگر 2018

عنوان فارسی
بهینه سازی شاخص گذاری منابع خوشه ای اینترنت اشیا بر اساس الگوریتم کلونی مورچه بهبود یافته
عنوان انگلیسی
Optimization of cluster resource indexing of Internet of Things based on improved ant colony algorithm
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
9
سال انتشار
2018
نشریه
اشپرینگر - Springer
فرمت مقاله انگلیسی
PDF
کد محصول
E8851
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
الگوریتم ها و محاسبات، اینترنت و شبکه های گسترده
مجله
محاسبه خوشه ای - Cluster Computing
دانشگاه
School of Economy and Trade - Hunan University - Changsha - China
کلمات کلیدی
الگوریتم کلونی مورچه، اینترنت اشیا، منابع خوشه ای، شاخص گذاری، خوشه بندی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


In Internet of Things, the resource distribution is random in space, which leads to the poor precision ratio of the cluster resource indexing of Internet of Things, so in order to improve the information fusion and dispatching ability of Internet of Things, it is necessary to optimize the resource indexing of Internet of Things. Therefore, an algorithm for cluster resource indexing of Internet of Things based on improved ant colony algorithm is proposed in this paper. Directed graph models are used to construct a distribution structure model of cluster resource indexing nodes of Internet of Things, carry out semantic association feature extraction in the cluster resource storage information flow of Internet of Things. And the improved ant colony algorithm is used to crawl and capture cluster information in Internet of Things. According to the ant colony trajectory information, the velocity and position of the cluster resource indexing of Internet of Things are updated, and the balanced ant colony algorithm is used to carry out the global search and local search to resources and initialize the clustering center, and the target function of the cluster resource indexing of Internet of Things is constructed and the optimization parameter is solved with the constraint condition of the minimum variance of the whole fitness. The strong ability of global optimization of the ant colony algorithm is used to realize resource indexing optimization. Simulation results show that the improved algorithm can quickly realize resource index convergence, effectively escape local minimum points, and has strong global search ability and relatively high resource indexing precision ratio.

نتیجه گیری

5 Conclusion


In this paper, the cluster resource optimum indexing of Internet of Things is studied, and an algorithm for cluster resource indexing of Internet of Things based on improved ant colony algorithm is proposed. Directed graph models are used to construct a distribution structure model of cluster resource indexing nodes of Internet of Things, carry out semantic association feature extraction in the cluster resource storage information flow of Internet of Things. And the improved ant colony algorithm is used to crawl and capture cluster information in Internet of Things. According to the ant colony trajectory information, the velocity and position of the cluster resource indexing of Internet of Things are updated, and the balanced ant colony algorithm is used to carry out global search and local search to resources. The target function of the cluster resource indexing of Internet of Things is constructed and the optimization parameter is solved with the constraint condition of the minimum variance of the whole fitness. The strong ability of global optimization of the ant colony algorithm is used to realize resource optimum indexing. This method is strong in global optimization and good in convergence in cluster resource indexing of Internet of Things, which improves the indexing ability to target resources, and it has a good application value in the information platform construction and resource scheduling of Internet of Things.


بدون دیدگاه