منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی طبقه بندی شبکه عصبی سیگنال های نوار مغزی برای شناسایی حمله بیماری ها - IEEE 2018

عنوان فارسی
طبقه بندی شبکه عصبی سیگنال های نوار مغزی برای شناسایی حمله بیماری ها
عنوان انگلیسی
Neural Network Classification Of Eeg Signal For The Detection Of Seizure
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
6
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
پایگاه
اسکوپوس
کد محصول
E9112
رشته های مرتبط با این مقاله
پزشکی، مهندسی پزشکی
گرایش های مرتبط با این مقاله
مغز و اعصاب، بیوالکتریک
مجله
کنفرانس بین المللی IEEE در روند اخیر در فناوری اطلاعات و ارتباطات الکترونیک - IEEE International Conference On Recent Trends in Electronics Information & Communication Technology
دانشگاه
Dept. of E&C - RIT - Bangalore
کلمات کلیدی
EEG، تشخیص تشنج، DWT، لحظات آماری، شبکه عصبی
doi یا شناسه دیجیتال
https://doi.org/10.1109/RTEICT.2017.8256658
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Brain is the strongest part of the human body which consists of the number of neurons. Electrical activity of the brain can be measured using many techniques in which EEG is widely used. Any change in electrical signal will define a particular abnormality in human. This paper, suggest a algorithm for the EEG signal analysis for the detection of seizure using wavelet transform and statistical parameters. Data set consists of two sampling rates, one with 128Hz and another with sampling rate of 1024Hz. Feature extraction was done using discrete wavelet transform. Once a feature extraction is done the data will be given to a neural network for the classification. A multilayered neural network was used classify seizure and normal person. The proposed algorithm is tested on 23 data sets. Classification accuracy of 100% has been achieved for the sampling rate of 1024 and 85% for the data with sampling rate of 128. Total system accuracy achieved is 92.5%.

نتیجه گیری

VI. CONCLUSION


In this paper, two database have been used, one with 128Hz and another is with 1024Hz. Feature extraction was done using DWT method and statistical parameter were calculated on wavelet coefficients. For classification purposes, three different sets have been considered. Considering all the bands at once, considering only three bands at a time and finally considering the individual band. From the Table I, II conclude that for the sampling rate of 1024 Hz results are more accurate. This paper also concludes that the accuracy is less when sampling rate is less. But when sampling rate is increased decomposition level increases which in turn increases the processing time.


بدون دیدگاه