دانلود رایگان مقاله انگلیسی شبیه سازی شکست تصاعدی چند مقیاس کامپوزیت بافته شده سه بعدی تحت تنش تک محوری - الزویر 2019

عنوان فارسی
شبیه سازی شکست تصاعدی چند مقیاس کامپوزیت بافته شده سه بعدی تحت تنش تک محوری
عنوان انگلیسی
Multi-scale progressive failure simulation of 3D woven composites under uniaxial tension
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
23
سال انتشار
2019
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
نوع نگارش
مقالات پژوهشی (تحقیقاتی)
رفرنس
دارد
پایگاه
اسکوپوس
کد محصول
E10810
رشته های مرتبط با این مقاله
مهندسی مواد
گرایش های مرتبط با این مقاله
کامپوزیت
مجله
سازه های کامپوزیتی - Composite Structures
دانشگاه
Department of Astronautic Science and Mechanics - Harbin Institute of Technology - P.R. China
کلمات کلیدی
کامپوزیت بافته شده سه بعدی، مقیاس چندگانه، المان محدود ناهمگون، آسیب، کشش تک محوره
doi یا شناسه دیجیتال
https://doi.org/10.1016/j.compstruct.2018.09.081
چکیده

Abstract


This paper presents a multi-scale progressive failure modeling scheme to analyze the damage behaviors of 3D angle-interlock woven composites under uniaxial tension. The macro-scale progressive damage model is established based on a meso-scale representative volume cell (RVC) model by using the inhomogeneous finite element method. In current model, a modified Puck criterion for fiber yarn and parabolic yield criterion for the matrix are chosen to be the damage initiation and propagation criteria, which can clearly describe the fiber breakage, inter-fiber fracture and matrix crack in the level of the fiber yarn and the matrix. The tensile effective elastic properties and the failure strength as well as the damage evolution process of this 3D woven composite are predicted. A series of uniaxial tensile tests are conducted to validate the macro-scale progressive damage model. Experimental and numerical results are compared and discussed.

نتیجه گیری

Conclusion


A multi-scale progressive failure modeling scheme is presented to analyze the damage initiation and development of 3D angle-interlock woven composites under uniaxial tension load. The macroscale failure behaviors are simulated based on a RVC model by using inhomogeneous finite element method. Fiber yarn breakage, inter-fiber yarn fracture is predicted by using modified Puck criteria, the matrix crack is predicted by using the parabolic yield criterion. Experimental results show that initial damage first occurs in matrix on the surface of the specimen, then the matrix particles detaches gradually with the increasing of the load. Finally, the brittle fracture occurs on the specimen along with the warp yarns breakage. The proposed model is correlated and validated by experimental study. Simulated damage evolvement and failure modes agrees well with that observe in experiment. Results show that damage initiates in matrix first and expands gradually when strain is in the range of (0.54% - 0.94%). Then slight damage related to occurs around the strain of 1.15%. When strain reaches around ??,1 1.80%, damage related to expands rapidly and the warp fibers breakage result in the failure of ??,1 the whole structure. Additionally, models with different mesh sizes are simulated. The calculation results indicate that 0.25 mm is a reasonable mesh size. In conclusion, the proposed model can predict the damage evolution progress of a full-size specimen with considering the fiber breakage, inter-fiber fracture and matrix crack.


بدون دیدگاه