دانلود رایگان مقاله مدل برای بهینه سازی روش تتا و ارتباط آن با مدل فضای حالت

عنوان فارسی
مدل برای بهینه سازی روش تتا و ارتباط آنها با مدل فضای حالت
عنوان انگلیسی
Models for optimising the theta method and their relationship to state space models
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
11
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E4011
رشته های مرتبط با این مقاله
مدیریت
مجله
مجله بین المللی پیش بینی - International Journal of Forecasting
دانشگاه
گروه آمار، دانشگاه فدرال سائو کارلوس برزیل
کلمات کلیدی
پیش بینی سری های زمانی، روش تتا، مدل فضای حالت،رقابت M3 ، ترکیب
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


Accurate and robust forecasting methods for univariate time series are very important when the objective is to produce estimates for large numbers of time series. In this context, the Theta method’s performance in the M3-Competition caught researchers’ attention. The Theta method, as implemented in the monthly subset of the M3-Competition, decomposes the seasonally adjusted data into two ‘‘theta lines’’. The first theta line removes the curvature of the data in order to estimate the long-term trend component. The second theta line doubles the local curvatures of the series so as to approximate the shortterm behaviour. We provide generalisations of the Theta method. The proposed Dynamic Optimised Theta Model is a state space model that selects the best short-term theta line optimally and revises the long-term theta line dynamically. The superior performance of this model is demonstrated through an empirical application. We relate special cases of this model to state space models for simple exponential smoothing with a drift. © 2016 The Author(s). Published by Elsevier B.V. on behalf of International Institute of Forecasters.

نتیجه گیری

5. Concluding remarks


In this paper, we have proposed a generalisation of the Theta method, namely the dynamic optimised Theta model. The DOTM selects the theta line to be used for the extrapolation of the short-term component of the series optimally, and also revises the At and Bt in the longterm component at each time period t. In addition, the proposed model is provided under a state space approach, which allows already consolidated statistical tools to be used for parameter estimation. The newly proposed model was contrasted with the original Theta method and other variants such as the SES-d model, both theoretically and empirically.


بدون دیدگاه