5. Discussion and conclusion
The experiments conducted in the study successfully demonstrate the beneficial factors of SVM-SVEGA over a range of other feature selection algorithms and prove it to be a promising technique. The results also show that the choices of the kernel function and feature selection technique have a profound effect on the performance of SVM for both binary and multi data classification. The effect of various SVM kernels impacted by the proposed SVEGA scheme is also investigated. Depending on the nature of the problem – binary class or multi class, appropriate kernels may be chosen. The study conducted can be comprehendingly substituted as a complete expert system modelfor deducing faster clinical diagnosis with better accuracy. The future work can test the proposed techniques on datasets from other domains. Further Ant Colony Optimization and Particle Swarm Analysis may be employed when low cost study is required.