منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی یادگیری ماشین برای رمز گشایی الکتروانسفالوگرافی و حرکت دست سریع روباتیک - IEEE 2018

عنوان فارسی
یادگیری ماشین برای رمز گشایی الکتروانسفالوگرافی و حرکت دست سریع روباتیک
عنوان انگلیسی
Machine Learning for Electroencephalography Decoding and Robotics Dextrous Hands Movement
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
6
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
کد محصول
E8523
رشته های مرتبط با این مقاله
مهندسی برق
گرایش های مرتبط با این مقاله
هوش ماشین و رباتیک
مجله
کنفرانس بین المللی قدرت، سیگنال، کنترل و محاسبه - International Conference on Power Signals Control and Computation
دانشگاه
College of Engineering - University of Bahrain - Sukair Campus - Kingdom of Bahrain
کلمات کلیدی
EEG، مصنوعی، یادگیری ان اف، PAC
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


This work focuses on using machine learning (data analysis) for interpretation and understanding of brainwaves resulting from electroencephalography during a grasping task. Electroencephalography – EEG - was used for acquisition of brain neural signals thought activity, hence to layout a control strategy for robotic hand and fingers movements. This is done via decoding, in real-time, the neural activity associated with fingers motions. Results are used for training robotics dexterous hands, and might allow people with spinal cord injury, brainstem stroke, and ALS (amyotrophic lateral sclerosis) to control a robotic-prosthetic by thinking about movements. The project is novel in a sense, it relies on detecting grasping features for a human grasping using Principle Component Analysis (PAC), hence to learn these features for recognitions applications.

نتیجه گیری

V. CONCLUSIONS


This article has elaborated on a concept of building an intelligent grasping behavior for a robotic hand-prosthesis. That was based on using Electroencephalography. Due to enormous sensory and hand-prosthesis data to be analyzed, the article has presented a reduced dimensionally and size of the hand sensory data using PCA. The dimensionality reduction of hand information and features, are hence used as stimuli to a Neuro-fuzzy architecture. Stimuli of the decision-based learning architecture, are (hand, fingers configurations), wrenching, and behaviors related to particular grasp. Learned behaviors are (no-grasp, start to grasp, fair, soft, power grasps) with multi-levels of hand-prosthesis intelligence. The article has presented the details of the designed intelligent based robot hand-prosthesis that learn human intended behavior through the use of the EEG brainwaves.


بدون دیدگاه