منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله ترکیب دانش دامنه به بهینه سازی سیستم های انرژی

عنوان فارسی
ترکیب دانش دامنه به بهینه سازی سیستم های انرژی
عنوان انگلیسی
Incorporating domain knowledge into the optimization of energy systems
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
11
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E2183
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
داده کاوی
مجله
محاسبات کاربردی نرم - Applied Soft Computing
دانشگاه
ترنتو، ایتالیا
کلمات کلیدی
دانش دامنه، بهینه سازی سیستم های انرژی، مقداردهی اولیه، الگوریتم تکاملی چند هدفه
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

ABSTRACT


Energy plays a key factor in the advancement of humanity. As energy demands are mostly met by fossil fuels, the world-wide consciousness grows about their negative impact on the environment. Therefore, it becomes necessary to design sustainable energy systems by introducing renewable energies. Because of the intermittent availability of different renewable resources, the designing of a sustainable energy system should find an optimal mix of different resources. However, the optimization of this combination has to deal with a number of possibly contradictory objectives. Multi-objective evolutionary algorithms (MOEA) are widely used to solve this kind of problems. As optimizing an energy system by using a MOEA is computationally costly, it is necessary to solve the problem efficiently. For this purpose, we propose the incorporation of domain knowledge related to energy systems into different phases (i.e., initialization and mutation) of a MOEA run. The proposed approaches are implemented for two widely used MOEAs and evaluated on the Danish Aalborg test problem. The experimental results show that each approach individually achieves significant improvements of the energy systems, which is expressed in better trade-off sets. Moreover, a state-of-the-art stopping criterion is adapted to detect the convergence in order to save computational resources. Finally, all proposed techniques are merged within two MOEAs with the result that our combined approaches yield significantly better results in less time than generic approaches.

نتیجه گیری

6. Conclusion


Current and future energy systems will include more and more renewable energy sources. To accurately plan such systems, complex and computationally costly simulations are typically used to assess configurations according to different objectives,for example, based on their cost and their emissions. General purpose multi-objective evolutionary algorithms are often used to solve such problems, however, the simulation cost result in time-consuming optimizations. In this article, we present and combine different techniques to improve both solution quality and speed of an optimization. First and foremost, we incorporate basic domain knowledge about energy systems into different operators of such algorithms in order to increase the solution quality. In addition, we also adapt a recently-developed stopping criterion to save simulations.


بدون دیدگاه