دانلود رایگان مقاله انگلیسی بهبود دقت نمرات برای پیش بینی گاستروستومی پس از خونریزی داخل مغزی با یادگیری ماشین - الزویر 2018

عنوان فارسی
بهبود دقت نمرات برای پیش بینی گاستروستومی پس از خونریزی داخل مغزی با یادگیری ماشین
عنوان انگلیسی
Improving the Accuracy of Scores to Predict Gastrostomy after Intracerebral Hemorrhage with Machine Learning
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
5
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
نوع نگارش
مقالات پژوهشی (تحقیقاتی)
رفرنس
دارد
پایگاه
اسکوپوس
کد محصول
E10207
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، پزشکی
گرایش های مرتبط با این مقاله
هوش مصنوعی، مغز و اعصاب
مجله
مجله بیماری های مغزی - Journal of Stroke and Cerebrovascular Diseases
دانشگاه
Center for Healthcare Studies - Northwestern University - Chicago - Illinois
کلمات کلیدی
خونریزی داخل مغزی، گاستروستومی، نتایج، یادگیری ماشین
doi یا شناسه دیجیتال
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.026
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Background


Gastrostomy placement after intracerebral hemorrhage indicates the need for continued medical care and predicts patient dependence. Our objective was to determine the optimal machine learning technique to predict gastrostomy. Methods: We included 531 patients in a derivation cohort and 189 patients from another institution for testing. We derived and tested predictions of the likelihood of gastrostomy placement with logistic regression using the GRAVo score (composed of Glasgow Coma Scale 12, age >50 years, black race, and hematoma volume >30 mL), compared to other machine learning techniques (kth nearest neighbor, support vector machines, random forests, extreme gradient boosting, gradient boosting machine, stacking). Receiver Operating Curves (Area Under the Curve, [AUC]) between logistic regression (the technique used in GRAVo score development) and other machine learning techniques were compared. Another institution provided an external test data set. Results: In the external test data set, logistic regression using the GRAVo score components predicted gastrostomy (P < 0.001), however, with a lower AUC (0.66) than kth nearest neighbors (AUC 0.73), random forests (AUC 0.74), Gradient boosting machine (AUC 0.77), extreme gradient boosting (AUC 0.77), (P < 0.01 for all compared to logistic regression). Results from the internal test set were similar. Conclusions: Machine learning techniques other than logistic regression (eg, random forests, extreme gradient boost, and kth nearest neighbors) were significantly more accurate for predicting gastrostomy using the same independent variables. Machine learning techniques may assist clinicians in identifying patients likely to need interventions.

خلاصه

Summary


We found that machine learning techniques had higher accuracy in predicting gastrostomy after ICH compared to a validated ordinal prediction score using regression, even when using the same score components as independent variables. Machine learning techniques are likely to be useful to predict outcomes that have heretofore been predicted by logistic regression using ordinal scores. Machine learning may be broadly applicable for predicting complications and outcomes, given the ubiquitous need for accurate predictions and risk assessments in clinical medicine.


بدون دیدگاه