دانلود رایگان مقاله انگلیسی شناسایی گره های تاثیرگذار در شبکه های پیچیده مبتنی بر AHP - الزویر 2018

عنوان فارسی
شناسایی گره های تاثیرگذار در شبکه های پیچیده مبتنی بر AHP
عنوان انگلیسی
Identifying influential nodes in complex networks based on AHP
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
48
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E8511
رشته های مرتبط با این مقاله
مهندسی فناوری اطلاعات
گرایش های مرتبط با این مقاله
شبکه های کامپیوتری
مجله
فیزیک آ - Physica A
دانشگاه
School of Computer and Information Science - Southwest University - Chongqing - China
کلمات کلیدی
شبکه های پیچیده، گره های تاثیرگذار، AHP، MADM، اندازه گیری مرکزیت
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


In the field of complex networks, how to identify influential nodes in the network is still an important research topic. In this paper, a method to identify the influence of the node based on Analytic Hierarchy Process (AHP) is proposed. AHP, as a multiple attribute decision making (MADM) technique has become an important branch of decision making since then. Every centrality measure has its own disadvantages and limitations, thus we consider several different centrality measures as the multi-attribute of complex network in AHP application. AHP is used to aggregate the multi-attribute to obtain the evaluation of the influence of each node. The experiments on four real networks and an informative network show the efficiency and practicability of the proposed method.

نتیجه گیری

6. Conclusion


In this paper, a new method is proposed to identify the influential nodes in complex network based on the AHP. In our method, we consider several different centrality measures as the multi-attribute of complex network in AHP application and give the corresponding weights to each attribute according to the matching degree with F(t). AHP is used to aggregate the multi-attribute to evaluate the importance of each node, which can comprehensively consider different centrality measures. To evaluate the performance, we used the SI model to estimate the spreading influence of nodes by different methods. The Kendall’s tau coefficient τ between different methods and F(t) is calculated to demonstrate the effectiveness of the method. The experimental results on four real networks and an informative network show that our method can successfully identify the influential nodes in networks.


بدون دیدگاه