دانلود رایگان مقاله انگلیسی کروماتوگرافی جریان با جابجایی با وضوح بالا - الزویر 2018

عنوان فارسی
کروماتوگرافی جریان با جابجایی با وضوح بالا
عنوان انگلیسی
High-resolution turbulent flow chromatography
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
48
سال انتشار
2018
رفرنس
دارد
فرمت مقاله انگلیسی
PDF
نشریه
الزویر - Elsevier
نوع مقاله
ISI
نوع نگارش
مقالات پژوهشی (تحقیقاتی)
پایگاه
اسکوپوس
کد محصول
E9534
doi یا شناسه دیجیتال
https://doi.org/doi:10.1016/j.chroma.2018.07.059
دانشگاه
Waters Corporation - Instrument/Core Research/Fundamental Milford - USA
رشته های مرتبط با این مقاله
شیمی
کلمات کلیدی
کروماتوگرافی جریان متلاطم؛ کروماتوگرافی با وضوح بالا؛ جداسازی فوق العاده سریع؛ ستون لوله ای باز؛ مقاومت در برابر انتقال توده؛ فاز موبایل دی اکسید کربن
گرایش های مرتبط با این مقاله
شیمی تجزیه
مجله
مجله کروماتوگرافی - Journal of Chromatography A
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract

 

The resolution power of turbulent flow chromatography using carbon dioxide as the mobile phase and coated (crosslinked methyl phenyl polysiloxane) open tube columns (OTCs) as the stationary phase was investigated under retentive conditions (0 < k < 1). The improvement in column efficiency from a laminar to a turbulent flow regime was accurately measured for small molecules (coronene and benzo[a]anthracene). This relative increase in column performance decreased from 9 to 5, 3, and to 3 with increasing the retention factor from 0 to 0.2, 0.5, and to 1.0, respectively. Despite a four to five orders of magnitude larger sample dispersion coefficient in turbulent than in laminar flow, the mass transfer in turbulent flow chromatography is still 12controlled and limited by the slow sample transport across the viscous layer at the column wall. The benefit of turbulent flow chromatography is then restricted to small retention factor (k < 0.2). From a practical viewpoint, turbulent flow chromatography using carbon dioxide as the mobile phase and 20 m long × 180 µm i.d. × 0.2 µm film thickness OTCs provides ultra-fast (analysis time < 10 s) and high-resolution (plate counts of 33,000) separations of weakly retained compounds (k ∼0.1) at Reynolds number around 5000 (3.75 mL/min, 3000 psi back pressure).

نتیجه گیری

5 Conclusion

 

In this work, the mass transfer mechanisms of small molecules along a 180 µm i.d. × 20 m long × 0.2 µm film thickness OTC using pre-turbulent and turbulent mobile phases (carbon dioxide/methanol mixtures) were determined and compared under retained conditions (0 < k < 1). Under preturbulent flow regime, the dispersion coefficient of the analytes is around 3 × 10−4 cm2 /s, which is six times as large as their bulk diffusion coefficient. This is explained by the presence of unstable and decaying pre-turbulent puffs generated by the imperfection of the SFC system (injection event, flow delivery of the mobile phase mixture, ABPR ripple). The mass transfer mechanism is still controlled by the slow molecular transport in the entire volume of the mobile phase despite the presence of vanishing turbulent puffs. Under sustained turbulent flow regime, the dispersion coefficient of the analyte is about four to five orders of magnitude larger than the bulk diffusion coefficient. Unlike the prediction of the general Golay HETP equation, which anticipates negligible mass transfer resistance in the mobile phase, experiments revealed that the analyte bandspreading is still controlled by the slow mass transfer of the analyte across the thin viscous layer and the film of stationary phase. This is directly explained by the presence of the viscous and buffer layers in the wall region region of the OTC. In these layers, which occupy about 30% of the capillary volume at a Reynolds number of 5000, the viscous forces are still dominant over the inertial forces and the molecular transport remains slow.


بدون دیدگاه