دانلود رایگان مقاله انگلیسی کروماتوگرافی جریان با جابجایی با وضوح بالا – الزویر ۲۰۱۸
عنوان فارسی: | کروماتوگرافی جريان با جابجایی با وضوح بالا |
عنوان انگلیسی: | High-resolution turbulent flow chromatography |
تعداد صفحات مقاله انگلیسی : 48 | تعداد صفحات ترجمه فارسی : ترجمه نشده |
سال انتشار : 2018 | نشریه : الزویر - Elsevier |
فرمت مقاله انگلیسی : PDF | نوع مقاله : ISI |
نوع نگارش : مقالات پژوهشی (تحقیقاتی) | پایگاه : اسکوپوس |
کد محصول : E9534 | رفرنس : دارد |
محتوای فایل : PDF | حجم فایل : mb 1 |
رشته های مرتبط با این مقاله: شیمی |
گرایش های مرتبط با این مقاله: شیمی تجزیه |
مجله: مجله کروماتوگرافی - Journal of Chromatography A |
دانشگاه: Waters Corporation - Instrument/Core Research/Fundamental Milford - USA |
کلمات کلیدی: کروماتوگرافی جريان متلاطم؛ کروماتوگرافی با وضوح بالا؛ جداسازی فوق العاده سریع؛ ستون لوله ای باز؛ مقاومت در برابر انتقال توده؛ فاز موبایل دی اکسید کربن |
doi یا شناسه دیجیتال: https://doi.org/doi:10.1016/j.chroma.2018.07.059 |
Abstract
The resolution power of turbulent flow chromatography using carbon dioxide as the mobile phase and coated (crosslinked methyl phenyl polysiloxane) open tube columns (OTCs) as the stationary phase was investigated under retentive conditions (0 < k < 1). The improvement in column efficiency from a laminar to a turbulent flow regime was accurately measured for small molecules (coronene and benzo[a]anthracene). This relative increase in column performance decreased from 9 to 5, 3, and to 3 with increasing the retention factor from 0 to 0.2, 0.5, and to 1.0, respectively. Despite a four to five orders of magnitude larger sample dispersion coefficient in turbulent than in laminar flow, the mass transfer in turbulent flow chromatography is still 12controlled and limited by the slow sample transport across the viscous layer at the column wall. The benefit of turbulent flow chromatography is then restricted to small retention factor (k < 0.2). From a practical viewpoint, turbulent flow chromatography using carbon dioxide as the mobile phase and 20 m long × 180 µm i.d. × 0.2 µm film thickness OTCs provides ultra-fast (analysis time < 10 s) and high-resolution (plate counts of 33,000) separations of weakly retained compounds (k ∼0.1) at Reynolds number around 5000 (3.75 mL/min, 3000 psi back pressure).
5 Conclusion
In this work, the mass transfer mechanisms of small molecules along a 180 µm i.d. × 20 m long × 0.2 µm film thickness OTC using pre-turbulent and turbulent mobile phases (carbon dioxide/methanol mixtures) were determined and compared under retained conditions (0 < k < 1). Under preturbulent flow regime, the dispersion coefficient of the analytes is around 3 × 10−4 cm2 /s, which is six times as large as their bulk diffusion coefficient. This is explained by the presence of unstable and decaying pre-turbulent puffs generated by the imperfection of the SFC system (injection event, flow delivery of the mobile phase mixture, ABPR ripple). The mass transfer mechanism is still controlled by the slow molecular transport in the entire volume of the mobile phase despite the presence of vanishing turbulent puffs. Under sustained turbulent flow regime, the dispersion coefficient of the analyte is about four to five orders of magnitude larger than the bulk diffusion coefficient. Unlike the prediction of the general Golay HETP equation, which anticipates negligible mass transfer resistance in the mobile phase, experiments revealed that the analyte bandspreading is still controlled by the slow mass transfer of the analyte across the thin viscous layer and the film of stationary phase. This is directly explained by the presence of the viscous and buffer layers in the wall region region of the OTC. In these layers, which occupy about 30% of the capillary volume at a Reynolds number of 5000, the viscous forces are still dominant over the inertial forces and the molecular transport remains slow.