# دانلود رایگان مقاله انگلیسی توسعه منطق فازی با موانع زیاد - الزویر 2018

عنوان فارسی
توسعه منطق فازی با موانع زیاد
عنوان انگلیسی
Extending fuzzy logics with many hedges
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
13
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E8764
رشته های مرتبط با این مقاله
ریاضی
گرایش های مرتبط با این مقاله
ریاضی کاربردی
مجله
مجموعه های فازی و سیستم ها - Fuzzy Sets and Systems
دانشگاه
Faculty of Information Technology - Hanoi University of Mining and Geology - Hanoi - Viet Nam
کلمات کلیدی
منطق فازی ریاضی؛ منطق مبتنی بر T-Norm؛ مانع؛ Axiomatization؛ تکمیل؛ جبر Hedge
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract

Fuzzy logic aims at modeling logical reasoning with vague or imprecise statements, which may contain linguistic hedges. In fact, many hedges, e.g., very, highly, rather, and slightly, can be used simultaneously to express different levels of emphasis. Moreover, each hedge might have a dual one, e.g., slightly can be seen as a dual hedge of very. Thus, it is necessary to extend systems of fuzzy logic with multiple hedges. This work proposes two axiomatizations for multiple hedges as an expansion of a core fuzzy logic. In one axiomatization, hedges do not have any dual one while in the other, each hedge can have its own dual one. It is shown that the proposed logics not only cover a large class of hedge functions but also have all completeness properties as the underlying logic w.r.t. the class of their chains as well as distinguished subclasses of their chains, including standard completeness. The axiomatizations are also extended to the first-order level. Furthermore, we present a method to build linguistic fuzzy logics based on the axiomatizations and a hedge algebra, whose corresponding algebras use a linguistic truth domain taken from the hedge algebra, for representing and reasoning with linguistically-expressed human knowledge, where truth values of vague sentences are given in linguistic terms.

نتیجه گیری

8. Conclusion

This paper proposes two axiomatizations for multiple hedges as an expansion over a core fuzzy logic. In one axiomatization, hedges do not have any dual relations while in the other, each hedge can have its own dual one. These axiomatizations can be seen as an expansion of those of Esteva et al. [14], which are an expansion of a core fuzzy logic with a truth-stressing hedge and/or a truth-depressing one. It is shown that the proposed logics not only cover a large class of hedge functions but also have all completeness properties of the underlying logic w.r.t. the class of its chains and distinguished subclasses of its chains, including standard completeness. The axiomatizations are also extended to the first-order level. Moreover, we show how to build linguistic fuzzy logics based on the axiomatizations and a linear hedge algebra for representing and reasoning with linguistically-expressed human knowledge, where truth values of vague sentences are given in linguistic terms, and many hedges are often used simultaneously to express different levels of emphasis.

بدون دیدگاه