منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی روش طبقه بندی برای امنیت کلان داده ها بر اساس شبکه GMPLS / MPLS - هینداوی 2018

عنوان فارسی
یک روش طبقه بندی موثر برای امنیت کلان داده ها بر اساس شبکه GMPLS / MPLS
عنوان انگلیسی
An Effective Classification Approach for Big Data Security Based on GMPLS/MPLS Networks
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
11
سال انتشار
2018
نشریه
هینداوی - Hindawi
فرمت مقاله انگلیسی
PDF
کد محصول
E8494
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
امنیت اطلاعات، رایانش امن، شبکه های کامپیوتری
مجله
شبکه های امنیتی و ارتباطی - Security and Communication Networks
دانشگاه
German Jordanian University - Jordan
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Te need for efective approaches to handle big data that is characterized by its large volume, diferent types, and high velocity is vital and hence has recently attracted the attention of several research groups. Tis is especially the case when traditional data processing techniques and capabilities proved to be insufcient in that regard. Another aspect that is equally important while processing big data is its security, as emphasized in this paper. Accordingly, we propose to process big data in two diferent tiers. Te frst tier classifes the data based on its structure and on whether security is required or not. In contrast, the second tier analyzes and processes the data based on volume, variety, and velocity factors. Simulation results demonstrated that using classifcation feedback from a MPLS/GMPLS core network proved to be key in reducing the data evaluation and processing time.

نتیجه گیری

5. Conclusion and Future Work


In this paper, a new security handling approach was proposed for big data. Te proposed method is based on classifying big data into two tiers (i.e., Tier 1 and Tier 2). Te classifcation requires a network infrastructure that supports GMPLS/MPLS capabilities. Te GMPLS/MPLS simplifes the classifcation by providing labeling assignments for the processed big data trafc. Te obtained results show the performance improvements of the classifcation while evaluating parameters such as detection, processing time, and overhead. Future work on the proposed approach will handle the visualization of big data information in order to provide abstract analysis of classifcation. Furthermore, more security analysis parameters are to be investigated such as integrity and real time analysis of big data.


بدون دیدگاه