منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی شبکه بیزی توزیع شده با تحلیل جنبه آهسته برای تشخیص گسل - IEEE 2018

عنوان فارسی
شبکه بیزی توزیع شده با تحلیل جنبه آهسته برای تشخیص گسل
عنوان انگلیسی
Distributed Bayesian network with slow feature analysis for fault diagnosis
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
6
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
پایگاه
اسکوپوس
کد محصول
E8933
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
هوش مصنوعی، شبکه های کامپیوتری
مجله
کنفرانس سالیانه آکادمی جوانان انجمن چینی اتوماسیون - Youth Academic Annual Conference of Chinese Association of Automation
دانشگاه
College of Control Science and Engineering - Zhejiang University - State Key Laboratory of Industrial Control Technology - Hangzhou - China
کلمات کلیدی
تشخیص گسل، طبقه بندی شبکه های بیزی، SFA، استخراج ویژگی، روند صنعتی
doi یا شناسه دیجیتال
https://doi.org/10.1109/YAC.2018.8406535
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Although the conventional Bayesian network classifier (BNC) has been widely reported in the field of fault diagnosis, sometimes, it may not always work well to separate all faults with a single network. Besides, BNC only considers static distribution information but ignores the dynamic information. The dynamic nature in fault data, which is reflected in temporal behaviors of process data, can describe some meaningful underlying fault characteristics. Here, a novel distributed Bayesian network based on slow feature analysis (SFA-DBN) is proposed for fault diagnosis of complex process. The purpose of this work is to improve the performance of BNC for inseparable faults. The first step of this model is to build a global Bayesian network (GBN) to distinguish the inseparable faults from the separable faults. Second, the inseparable faults are divided into several fault subsets on basis of slow feature analysis (SFA) in which, dynamic variations are similar within the same subset while they are significantly different for different subsets. Third, a set of parallel Bayesian networks (PBNs) are designed to construct the distributed BN for fault diagnosis with different BNs for different fault subsets. Two credible criteria are also presented for offline reasonable partition and online correct identification. Finally, Tennessee Eastman (TE) Process verifies the validity of this proposed model.

نتیجه گیری

IV. CONCLUSION


To improve the accuracy of Bayesian network classifier for complex processes, an effective SFA-DBN algorithm is proposed in this paper. By dividing inseparable faults into different subsets and analyzing the dynamic features, the inseparable faults can be well classified by development of PBNs. Furthermore, future work may focus on how to extend the proposed method to trace the fault root variables.


بدون دیدگاه