منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی تشخیص پیچیدگی شبکه های بیزی توسط زبان های گزاره ای و ارتباطی - الزویر 2018

عنوان فارسی
تشخیص پیچیدگی شبکه های بیزی توسط زبان های گزاره ای و ارتباطی
عنوان انگلیسی
The complexity of Bayesian networks specified by propositional and relational languages
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
83
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
نوع نگارش
مقالات پژوهشی (تحقیقاتی)
رفرنس
دارد
پایگاه
اسکوپوس
کد محصول
E8920
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
هوش مصنوعی، شبکه های کامپیوتری
مجله
هوش مصنوعی - Artificial Intelligence
دانشگاه
Escola Politécnica - Universidade de São Paulo - Brazil
کلمات کلیدی
شبکه های بیزی، نظریه پیچیدگی، منطق ارتباطی، مدل های صفحه ای، مدل های رابطه ای احتمالاتی
doi یا شناسه دیجیتال
https://doi.org/10.1016/j.artint.2018.06.001
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


We examine the complexity of inference in Bayesian networks specified by logical languages. We consider representations that range from fragments of propositional logic to function-free first-order logic with equality; in doing so we cover a variety of plate models and of probabilistic relational models. We study the complexity of inferences when network, query and domain are the input (the inferential and the combined complexity), when the network is fixed and query and domain are the input (the query/data complexity), and when the network and query are fixed and the domain is the input (the domain complexity). We draw connections with probabilistic databases and liftability results, and obtain complexity classes that range from polynomial to exponential levels; we identify new languages with tractable inference, and we relate our results to languages based on plates and probabilistic relational models.

بخشی از متن مقاله

4. Relational Languages: Inferential, query, and domain complexity


In this section we extend our specification framework so as to deal with relational languages. Such languages have been used in a variety of applications with repetitive entities and relationships [46, 109], as we have alluded to in Section 1. They have roots in general probabilistic logics that mix deterministic knowledge and uncertain reasoning in very flexible, but sometimes too complicated, ways [56]. The more focused interest in extending Bayesian networks with relational constructs has produced an array of practical languages, as we summarize later in Section 7: plates, PRMs, probabilistic logic programs. It is not easy to extract a “common denominator” from these languages. However, with some reflection we see that they all parameterize random variables using relations; they all allow for logical definitions to be mixed with probabilistic assessments; they all resort to the semantics of first-order logic to interpret relations using sets (domains). We capture these common features in Section 4.1; to do so, we use “parvariables” and related techniques introduced by Poole [103], using as much syntax and semantics as possible from first-order logic and in particular from lifted inference techniques [90] (and borrowing some terminology from description logics and logic programming as appropriate). Throughout we resort to the same idea advocated in Section 3: that is, that a model can be specified by a set of probability assessments and a set of logical definitions that belong to a selected logical language. This is exactly the situation in acyclic probabilistic logic programs and many other existing languages, as shown later in Section 7.


بدون دیدگاه