منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی طبقه بندی محاسبات ذهنی و حالت استراحت بر اساس الکتروانسفالوگرافی گوش - IEEE 2018

عنوان فارسی
طبقه بندی محاسبات ذهنی و حالت استراحت بر اساس الکتروانسفالوگرافی گوش
عنوان انگلیسی
Classification of Mental Arithmetic and Resting-State Based on Ear-EEG
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
4
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
پایگاه
اسکوپوس
کد محصول
E9110
رشته های مرتبط با این مقاله
مهندسی پزشکی، کامپیوتر، پزشکی
گرایش های مرتبط با این مقاله
بیوالکتریک، مغز و اعصاب
مجله
ششمین کنفرانس بین المللی رابط مغز-کامپیوتر - 6th International Conference on Brain-Computer Interface
دانشگاه
Department of Medical IT Convergence Engineering - Kumoh National Institute of Technology - Gumi - South Korea
کلمات کلیدی
الکتروانسفالوگرافی (EEG)؛ رابط کامپیوتر-مغز (BCI)؛ EEG گوش؛ حساب ذهنی؛ سیستم BCI درونی
doi یا شناسه دیجیتال
https://doi.org/10.1109/IWW-BCI.2018.8311525
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Electroencephalography (EEG) has been mainly utilized for developing brain-computer interface (BCI) systems. In recent, use of Ear-EEG measured around the ears has been proposed to enhance the practicality of conventional EEG-based BCI systems. Most of BCI systems based on Ear-EEG have used exogenous BCI paradigms employing external stimuli. In this study, we investigated the feasibility of using Ear-EEG in developing an endogenous BCI system that uses self-modulated brain signals. EEG data was measured while subjects performed mental arithmetic (MA) and baseline (BL) task. EEG data analysis was performed after dividing the whole brain area into four regions of interest (frontal, central, occipital, and ear area) to compare their EEG characteristics and classification performance. Similar event-related (de)synchronization (ERD/ERS) patterns were observed between the four ROIs, and classification performance was insignificant between them, except occipital area (frontal: 72.6 %, central: 76.7 %, occipital: 82.6 % and ear: 75.6 %). From the results, we could confirm the possibility of using Ear-EEG for developing an endogenous BCI system.

نتیجه گیری

IV. CONCLUSION


This study aims to develop an Ear-EEG based endogenous BCI system by discriminating brain responses induced by MA and BL. Brain responses (ERD/ERS) measured around the ears were similar to those measured from the other brain areas. In particular, strong ERS pattern in alpha frequency band was observed across all ROIs, which is consistent with a previous study that reported alpha activity increase during high cognitive task [14]. The mean classification accuracy using Ear-EEG was 75.6 %, and it was not significantly difference between other brain areas, except occipital area. From the analysis results, we confirmed the feasibility of using endogenous paradigm for developing an Ear-EEG based BCI systems, but more experiments should be performed with more subjects to generalize our results.


بدون دیدگاه