10. Conclusion
In this paper, we described a shape editing system for models used in 3D printing. Our system integrates FEM simulation to provide stress distribution feedback during mesh editing. Domain decomposition is adopted as a unified interface for shape editing, FEM system updating and shape optimization. Parametrization is used to efficiently synchronize stiffness matrices with the edited mesh, and the FEM system is updated with a local update scheme to avoid repetitive computations. A domain-based scaling optimization algorithm is also devised to automatically reduce high stresses while preserving mesh shape. We tested our system with a variety of 3D models and verified its accuracy with two physical experiments. The major limitation of our system is that it only supports the editing of skeleton-based models, and the editing interface is confined to domain-level translation, rotation and scaling. We are considering supporting more editing operations and parameterizing the stiffness matrix with more geometry parameters. In addition, our stiffness matrix parametrization only handles isotropic material. Therefore, integrating anisotropic material properties can be an interesting future work. In some large scale editing cases, we observe that large deformation may degenerate or even invert some tetrahedrons, which would downgrade the accuracy of the analysis or cause solver failure. Another possible future work can be to preserve qualities of the tetrahedral mesh or even apply re-meshing during mesh editing.