چکیده
با همه گیر شدن پایانه های تلفن همراه مبتنی بر مکان و محبوبیت برنامه های اجتماعی، سرویس شبکه یابی اجتماعی مبتنی بر مکان (LBSNS) راحتی زیادی را برای زندگی افراد به ارمغان آورده است. در ضمن، تشخیص مجاورتی که سرویس شبکه یابی اجتماعی مبتنی بر مکان را انعطاف پذیرتر می کند، نگرانی گسترده ای را به ارمغان آورده است. با این حال، پیشرفت سرویس شبکه یابی اجتماعی مبتنی بر مکان (LBSNS) با در نظر گرفتن حریم خصوصی موقعیت کاربران و امنیت داده ها، هنوز هم با چالش های بسیار شدیدی روبرو است. در این مقاله، ما دو طرح تشخیص مجاورتی حفظ حریم خصوصی و کارایی، یعنی AGRQ-P و AGRQ-C را برای کاربرد های اجتماعی مبتنی بر مکان پیشنهاد می کنیم. با طرح های پیشنهادی، یک کاربر می تواند هر ناحیه را بر روی نقشه انتخاب کند، و پرس و جو کند که آیا دوستانش در آن ناحیه بدون تقسیم اطلاعات کوئری به دو سرور برنامه اجتماعی و کاربران دیگر هستند یا خیر، در عین حال، مکانهای دقیق دوستانش برای سرورها و کاربر کوئری محرمانه هستند. مخصوصا، با الگوریتم های مبتنی بر متن رمزنگاری شده کوئری محدوده هندسی، کوئری کاربران و اطلاعات مکانی در متن رمزنگاری شده کلاینت پنهان می شود. تحلیل دقیق امنیتی نشان می دهد که تهدیدات امنیتی مختلف را می توان حفظ کرد. علاوه بر این، طرح های پیشنهادی در یک IM APP با یک مجموعه داده واقعی LBS اجرا می شوند، و نتایج شبیه سازی گسترده در سراسر تلفن های هوشمند نشان می دهند که AGRQ-P و AGRQ-C بسیار حساس هستند و می توانند به صورت موثری اجرا شوند.
مدلها و هدف طراحی
در این بخش، ما مدل سیستم و نیازمندی های امنیتی را رسمی سازی می کنیم و هدف طراحی مان را مشخص می کنیم.
A. مدل سیستمی
نکته کلیدی طرح سیستمی ما این است که اطلاعات حساس یک کاربر (مانند محدوده کوئری و اطلاعات مکانی دقیق) را نمی توان توسط سرور برنامه اجتماعی و کاربران دیگر بدست آورد. مخصوصا، سیستم ما شامل سه بخش می شود: سرور برنامه اجتماعی (SS)، کاربر کوئری (QU) و دوستان کاربر کوئری (UF) همانطور که در شکل 2 نشان داده شد.
• SS سرور یک برنامه اجتماعی است که برای کاربران، انواع سرویس ها شامل LBSNS را فراهم می کند. پس از ثبت در SS، کاربران مجاز هستند تا به مکان های مجاورتی کوئری از دوستانشان برای ارسال داده های در میان کاربران و محافظت از یکپارچگی داده ها استفاده کنند.
• QU کاربری است که در حال حاضر در SS ثبت نام کرده است. براساس برنامه های اجتماعی، QU می تواند لیست دوستانش را ایجاد کند. سپس او می تواند هر محدوده هندسی را بر روی نقشه انتخاب کند و کوئری را انتخاب کند که دوستان او در آن ناحیه انتخابی هستند.
• UF دوستان آنلاین QU هستند. در فرایند کوئری محدوده هندسی، UF کوئری نامعلوم را از QU دریافت می کند، سپس هر UF یک محاسبه ترکبی با داده های کوئری پنهان شده انجام می دهد و موقعیت خودش را هماهنگ می کند تا نتایجی از کوئری را بدست آورد که تنها توسط QU با محاسبه بیشتر قابل تحلیل است. از آنجا که بیشتر محاسبات در کلاینت انجام می شوند، کارایی محاسباتی طرح های حفظ حریم خصوصی ما باید تضمین شود.