منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله مدل سازی المان برش محدود پوسته خطی

عنوان فارسی
مدل سازی المان برش محدود پوسته خطی
عنوان انگلیسی
Cut finite element modeling of linear membranes
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
14
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E759
رشته های مرتبط با این مقاله
مهندسی مکانیک
گرایش های مرتبط با این مقاله
مکانیک جامدات و طراحی کاربردی
مجله
روشهای کامپیوتری در مکانیک کاربردی و مهندسی - Computer Methods in Applied Mechanics and Engineering
دانشگاه
دانشکده مهندسی مکانیک، سوئد
کلمات کلیدی
قطع روش المان محدود، پوسته غشاء و فرآیندهای غشایی، جاسازی شده پوسته، مشتق مماس
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


We construct a cut finite element method for the membrane elasticity problem on an embedded mesh using tangential differential calculus, i.e., with the equilibrium equations pointwise projected onto the tangent plane of the surface to create a pointwise planar problem in the tangential direction. Both free membranes and membranes coupled to 3D elasticity are considered. The discretization of the membrane comes from a Galerkin method using the restriction of 3D basis functions (linear or trilinear) to the surface representing the membrane. In the case of coupling to 3D elasticity, we view the membrane as giving additional stiffness contributions to the standard stiffness matrix resulting from the discretization of the three-dimensional continuum.

نتیجه گیری

5. Concluding remarks


In this paper we have introduced an FE model of curved membranes using higher dimensional shape functions that are restricted to (the approximation of) the membrane surface. This allows for rapid insertion of arbitrarily shaped membranes into already existing 3D FE models, to be used for example for optimization purposes. We have shown numerically that the cut element approach to membranes gives errors comparable to triangulated membranes, using the same degree of approximation, and we have proposed a stabilization method which provides stability to the solutionas well as giving the right conditioning of the discrete system, allowing for arbitrarily small cuts in the 3D mesh. The novelties of our approach are: (1) applying for the first time the cut element approach of [6] to models of thin elastic structures, and (2) modeling membranes embedded in a 3D bulk material with arbitrary orientation of the membrane relative to the meshing of the bulk. In future work, we will consider more realistic models of embedded membranes.


بدون دیدگاه