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b Department of Mathematics and Mathematical Statistics, Umeå University, SE-901 87 Umeå, Sweden
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Abstract

We construct a cut finite element method for the membrane elasticity problem on an embedded mesh using tangential differential
calculus, i.e., with the equilibrium equations pointwise projected onto the tangent plane of the surface to create a pointwise
planar problem in the tangential direction. Both free membranes and membranes coupled to 3D elasticity are considered. The
discretization of the membrane comes from a Galerkin method using the restriction of 3D basis functions (linear or trilinear) to the
surface representing the membrane. In the case of coupling to 3D elasticity, we view the membrane as giving additional stiffness
contributions to the standard stiffness matrix resulting from the discretization of the three-dimensional continuum.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we construct finite element methods for linearly elastic membranes embedded in three dimensional
space meshed by tetrahedral or hexahedral elements. These meshes do not in general align with the surface of the
membrane which instead cuts through the elements. For the modeling of the membrane problems we use tangential
differential calculus, introduced for the modeling of surface stresses by Gurtin and Murdoch [1] and for shell models
by Delfour and Zolésio [2]. The tangential approach was pioneered for use in finite element methods by Dziuk [3] for
discretizing the Laplace–Beltrami operator on meshed surfaces, and has become a standard method of developing dis-
crete schemes on surfaces, cf. Dziuk and Elliott [4] and references therein. The approach was subsequently employed
by Hansbo and Larson [5] for meshed membranes, and the aim of this paper is to extend this work following Olshan-
skii, Reusken, and Grande [6] and construct a Galerkin method by using restrictions of the 3D basis functions defined
on the three-dimensional mesh to the surface. This approach can lead to severe ill conditioning, so we adapt a stabi-
lization technique proposed by Burman, Hansbo, and Larson [7] for the Laplace–Beltrami operator to the membrane
problem.
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The main application that we have in mind is the coupling of membranes to 3D elasticity. This allows for the mod-
eling of reinforcements, such as shear strengthening and adhesive layers. We emphasize, however, that the mechanical
modeling herein is restricted in the sense that we simply add membrane stiffness to a continuous 3D approximation.
For more accurate mechanical modeling, say of adhesives, the 3D mesh must also be cut to incorporate, e.g., the
imperfect bonding approach of Hansbo and Hansbo [8], allowing for relative motion of the continuum on either side
of the adhesive. This extension is not explored in this paper but has been considered in a discontinuous Galerkin
setting in [9]. The idea of adding stiffness from lower-dimensional structures is a classical approach, cf. Zienkiewicz
[10, Chapter 7.9], using element sides or edges as lower dimensional entities. Letting the membranes cut through the
elements in an arbitrary fashion considerably increases the practical modeling possibilities.

The paper is organized as follows: in Section 2 we introduce the membrane model problem and the finite element
method for membranes and embedded membranes; in Section 3 we describe the implementation details of the method;
and in Section 4 we present numerical results.

2. The membrane model and finite element method

2.1. Tangential calculus

In what follows, Γ denotes an oriented surface, which is embedded in R3 and equipped with exterior normal nΓ .
The boundary of Γ consists of two parts, ∂ΓN, where zero traction boundary conditions are assumed, and ∂ΓD where
zero Dirichlet boundary conditions are assumed.

We let ρ denote the signed distance function fulfilling ∇ρ|Γ = nΓ .
For a given function u : Γ → R we assume that there exists an extension ū, in some neighborhood of Γ , such that

ū|Γ = u. Then the tangent gradient ∇Γ on Γ can be defined by

∇Γ u = PΓ∇u (1)

with ∇ the R3 gradient and PΓ = PΓ (x) the orthogonal projection of R3 onto the tangent plane of Γ at x ∈ Γ given
by

PΓ = I − nΓ ⊗ nΓ (2)

where I is the identity matrix. The tangent gradient defined by (1) is easily shown to be independent of the extension
u. In the following, we shall consequently not make the distinction between functions on Γ and their extensions when
defining differential operators.

The surface gradient has three components, which we shall denote by

∇Σ u =:


∂u

∂xΓ
,

∂u

∂yΓ
,

∂u

∂zΓ


.

For a vector valued function v(x), we define the tangential Jacobian matrix as the transpose of the outer product of
∇Γ and v,

(∇Γ ⊗ v)T
:=



∂v1

∂xΓ

∂v1

∂yΓ

∂v1

∂zΓ
∂v2

∂xΓ

∂v2

∂yΓ

∂v2

∂zΓ
∂v3

∂xΓ

∂v3

∂yΓ

∂v3

∂zΓ

 ,

the surface divergence ∇Γ · v := tr∇Γ ⊗ v, and the in-plane strain tensor

εΓ (u) := PΓ ε(u)PΓ , where ε(u) :=
1
2


∇ ⊗ u + (∇ ⊗ u)T


is the 3D strain tensor.
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2.2. The membrane model

We consider, following [5], the problem of finding u : Γ → R3 such that

−∇Γ · σΓ (u) = f on Γ ,
σΓ = 2µεΓ + λtrεΓ PΓ on Γ ,

(3)

where f : Γ → R3 is a load per unit area and, with Young’s modulus E and Poisson’s ratio ν,

µ :=
E

2(1 + ν)
, λ :=

Eν

1 − ν2

are the Lamé parameters in plane stress. As discussed in [5], these equations can be derived from minimization of the
surface potential energy functional

ΠΓ (u) :=
1
2


Γ

σΓ (u) : εΓ (u)dΓ −


Γ

f · u dΓ

and assuming the material obeys Hooke’s law in plane stress. Splitting the displacement into a normal part uN := u·nΓ

and a tangential part uT := u − uNnΓ , the corresponding weak statement takes the form: find

u ∈ V := {v : vN ∈ L2(Γ ) and vT ∈ [H1(Γ )]2, v = 0 on ΓD},

such that

a(u, v) = l(v), ∀v ∈ V, (4)

where

a(u, v) = (2µεΓ (u), εΓ (v))Γ + (λ∇Γ · u, ∇Γ · v)Γ , l(v) = (f , v)Γ ,

and

(v, w)Γ =


Γ

v · w dΓ and (εΓ (v), εΓ (w))Γ =


Γ

εΓ (v) : εΓ (w) dΓ

are the L2 inner products.

2.3. The cut finite element method

Let Th be a quasi uniform mesh, with mesh parameter 0 < h ≤ h0, into shape regular tetrahedra (hexahedra will
be briefly discussed in Section 3) of an open and bounded domain Ω in R3 completely containing Γ . On Th , let φ be
a continuous, piecewise linear approximation of the distance function ρ and define the discrete surface Γh as the zero
level set of φ; that is

Γh = {x ∈ Ω : φ(x) = 0}. (5)

Note that it is not necessary to use a distance function to represent the surface; however, φ being a distance function
ensures that the zero isoline of φ is insensitive to small perturbations. It can also be beneficial in cases where the
surfaces are moving, cf. [11].

We note that Γh is a polygon with flat faces and we let nh be the piecewise constant exterior unit normal to Γh . For
the mesh Th , we define the active background mesh by

Th = {T ∈ Th : T ∩ Γh ≠ ∅} (6)

cf. Fig. 2, and its set of interior faces by

Fh = {F = T +
∩ T −

: T +, T −
∈ Th}. (7)

The face normals n+

F and n−

F are then given by the unit normal vectors which are perpendicular on F and are pointing
exterior to T + and T −, respectively. We observe that the active background mesh Th gives rise to a neighborhood of
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Γh , which we denote by Ωh := ∪T ∈Th T with boundary ∂Ωh consisting of those element faces F that are exterior to
Th . Note that for all elements T ∈ Th there is a neighbor T ′

∈ Th such that T and T ′ share a face. We denote by ∂Ωh,D
the boundary of Ωh intersected by Γh,D

Finally, let Vh denote the space of continuous piecewise linear (or trilinear) polynomials defined on Th and

Vh =


v ∈ [Vh |Ωh ]

3
: v = 0 on ∂Ωh,D


(8)

be the space of continuous piecewise linear polynomials defined on Th . We remark that the zero boundary conditions
are taken into account by using the assumption that ∂Ωh,D intersects ∂Ωh , prescribing the displacements in the nodes
on the surface mesh in 3D. In a more general case Nitsche’s method could be used by adapting the approach proposed
by Burman et al. [12]. In that case, the notion of a distance function does not hold with respect to this surface boundary
which has to be represented otherwise.

The finite element method on Γh takes the form: find uh ∈ Vh such that

Ah(uh, v) = lh(v) ∀v ∈ Vh . (9)

Here the bilinear form Ah(·, ·) is defined by

Ah(v, w) = ah(v, w) + jh(v, w) ∀v, w ∈ Vh (10)

with

ah(v, w) = (2µεΓh (v), εΓh (w))Γh + (λ∇Γh · v, ∇Γh · w)Γh (11)

and

jh(v, w) =


F∈Fh


F

τ0

n+

F · ∇v

·

n+

F · ∇w


ds. (12)

Here [v] = v+
− v−, where w(x)± = lims→0+ w(x ∓ sn+

F ), denotes the jump of v across the face F , and τ0 is a
constant of O(1). The tangent gradients are defined using the normal to the discrete surface

∇Γh v = PΓh ∇v = (I − nh ⊗ nh)∇v, (13)

and the right hand side is given by

lh(v) = (f e, v)Γh , (14)

where f e denotes an extension of f from Γ to Γh (e.g., using the closest point projection, cf. [7]). The jump term jh(·, ·)

serves the purpose of reducing ill-conditioning present in the bilinear form ah(·, ·) resulting from the (difficult to
avoid) presence of arbitrarily small cuts through three-dimensional elements. Indeed, depending on the representation
of the zero level set, there may even be zero eigenvalues in ah(·, ·), corresponding to an inconsequential rotation of
the solution along the isoline as pointed out in the case of the Laplace–Beltrami operator in [7]; this problem is also
remedied through the presence of the jump stabilization. We remark however, that the presence of small cuts does not
affect convergence, only conditioning, cf. [7,6]. Note also that the thickness t of the membrane, assumed constant, has
been omitted here but will, for dimensional correctness, be introduced in the coupling to 3D below.

2.4. The case of embedding in a three-dimensional body

We next consider the case of a membrane embedded in a surrounding elastic matrix. This model could be used
for computation of adhesive interfaces or reinforcements using fibers or fiber plates. The setting is very general and
allows for both 2D and 1D models to be added to the 3D model. Here we only consider adding membrane stiffness
to an elastic 3D matrix, and we then use the triangulation Th for the discretization of three-dimensional elasticity. In
Ω\Γ we thus assume there holds

− ∇ · σ (u) = fΩ , σ = 2µε + λΩ trε I, (15)



102 M. Cenanovic et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 98–111

Fig. 1. 2D representation of the problem domain.

for given body force fΩ , where λΩ := Eν/((1 + ν)(1 − 2ν)). We assume for simplicity of presentation that u = 0
on ∂ΩD, a part of the boundary which is assumed to include ∂Ωh,D, and that the traction is zero on the rest of the
boundary. Our finite element method in the bulk is then based on the finite element space

Wh =


v ∈ [Vh]

3
: v = 0 on ∂ΩD


, (16)

and we seek uh ∈ Wh such that

aΩ (uh, v) + tah(uh, v) = lΩ (v) + tlh(v) ∀v ∈ Wh (17)

where t is the thickness of the membrane,

aΩ (uh, v) := (2µε(v), ε(w))Ω + (λ∇ · v, ∇ · w)Ω , and lΩ (v) := (fΩ , v)Ω .

The FEM (17) thus takes into account both the stiffness from the bulk and from the membrane. The bulk stiffness
matrix is here established independently of the position of the membrane which allows for rapid repositioning of
the membrane; this is beneficial for example for the purpose of optimizing the membrane location. We remark that
when the membrane is embedded in a three-dimensional mesh used for elasticity in all of Ω , then we can drop
the stabilization term (or set τ0 = 0) since the three-dimensional stiffness matrix gives stability to the embedded
membrane.

We remark that the membrane equations in this model are simply added to the bulk equations which in turn are
made to hold in Ω , not Ω\Γ , so that we are considering two different equilibrium problems involving the same
displacement field u. The coupling of bulk to membrane thus directly comes from the fact that there is only one
displacement field. For more general material modeling, we need to instead consider a discrete bulk problem actually
posed on Ω\Γ , which suggests the use of cut three dimensional element following [8]. In such a case we also need
to reintroduce the stabilization term jh(·, ·). As an example, consider cohesive zone modeling at the membrane where
we need to allow for independent relative motion of the bulk on either side of the membrane, with shear resistance.
We will return to this problem in future work.

3. Implementation

This Section describes the implementational aspects of the embedded membrane model (exemplified in Fig. 1) and
provides an algorithm of the implementation.

3.1. Algorithm

1. Construct a mesh T̃ in Rd on the domain Ω in which the implicit surface Γ will be embedded. Let xN denote the
vector of coordinates in T̃ .
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Fig. 2. Surface domain.

(a) 2D case. (b) Surface element normal. (c) 3D case.

Fig. 3. Surface element Γ i
h and parent element K i

Γ in 2D and 3D.

2. Construct the level set function ρ(x) either analytically or by the use of surface reconstruction, see Section 3.2.1
for details.

3. Discretize the distance function φ = ρ(xN ) by evaluating ρ in the nodes of the complete underlying mesh T̃ .
4. Find the indices to the elements in the background mesh Th , by using the discrete distance values (φ > 0 and φ <

0) in some nodes of element Ti , see Fig. 3.
5. Extract the following surface quantities. For every element Ti ∈ Th

(a) Find the zero surface points of the polygons Γh by looping over all elements Ti ∈ Th and interpolating the
discrete signed distance function φ linearly for every element edge that has a difference in function value
(see Fig. 3 and Section 3.2.2 for details). For simplicity the polygon Γh,i of element Ti is split into triangular
elements T̂ .

(b) Compute the face normal n f of each triangular element, which is used to compute the Jacobian for the basis
functions of element Ti . Note that care must be taken when defining the face normal, such that the orientation of
the normal field becomes unidirectional. The element normal nφ can be used to orient n f in the same direction.

6. Compute the displacement field uh on Th by solving linear system that results from the bilinear equation (10).
7. Interpolate the solution field uh to uΓh using the basis functions of the elements in Th .

3.2. Implementation details

3.2.1. Implicit surface construction
There are a number of ways to generate an implicit surface for analysis. An implicit surface can be approximated

from a CAD surface using surface reconstruction techniques, see Belytschko et al. [13]. Another way is to use
analytical implicit surface descriptions, see Burman et al. [14] for an overview. In this paper we use the following
analytical surface descriptions.
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(a) Cylinder. (b) Oblate spheroid.

Fig. 4. Implicit surfaces.

Cylinder function:

ρ(x, y, z) =


(x − xc)2 + (y − yc)2 − r (18)

where [xc, yc] is the center of the cylinder. See Fig. 4(a).
Oblate spheroid:

ρ(x, y, z) = x2
+ y2

+ (2z)2
− 1. (19)

See Fig. 4(b).

3.2.2. Zero level surface approximation
The overall procedure is to use linear interpolation on the discrete interface values for each element edge in order

to find the zero level surface point, see Fig. 3.

1. For every element Ti ∈ Th loop over all edges ei .
(a) For every edge ei check the sign of the two discrete function values φ|ei to determine if the edge is cut.
(b) Linearly interpolate the cut point xΓ ,i along the edge ei using the two vertex coordinates xm

ei
and xn

ei
, at nodes

m and n (endpoints of ei ) and the function values φ|ei = {φ(xm
ei
), φ(xn

ei
)}.

(c) Let xei ,1 = xei |φ|ei >0 (the coordinate corresponding to the highest value of φ) and xei ,0 = xei |φ|ei <0 and
compute the vector ni = xei ,1 − xei ,0. See Fig. 3(b).

2. Compute the element vector nφ =


ni . Note that nφ points in the general direction of ∇φ and is only used to
determine the orientation of the face normals.

3. Depending on the number of nodes in element KΓ
i and the orientation of the cut, several cut cases must be

considered, see Fig. 5 for tetrahedral element and Fig. 6 for hexahedral. A tessellation into triangles is done for all
cases.

4. In order to do the tessellation into triangles from an arbitrary polygon, a rotation from R3 into R2 was performed
and then a 2D convex hull algorithm was applied.

We remark that the approach discussed here is possible to generalize to higher order elements, but at the cost
of additional complexity in representing the level set, and the problem of dealing with the possibility of several
exits/entries of the level set in one and the same element. If, on the other hand, higher order elements are used without
raising the order of the level set, accuracy will be lost due to the poor representation of the geometry of the membrane
(planar cases being an obvious but important exception).

3.3. Membrane embedded in elastic material

In this Section we demonstrate one particular application of the elastic membrane. Consider a set of membrane
surfaces embedded into an elastic material body. We let the embedded membrane stiffen the solution by adding
stiffness from the membrane solution to the bulk solution. This is easily done since the membrane shares the same
degrees of freedom as the bulk.
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(a) Triangular. (b) Quadrilateral.

Fig. 5. Tetrahedral cut cases.

(a) Triangular. (b) Quadrilateral. (c) Pentagon. (d) Hexagon.

Fig. 6. Hexahedral cut cases.

3.3.1. Algorithm
The algorithm described here is similar to the one in Section 3.1. We allow for several membranes (with the

possibility of different material properties) to stiffen the bulk.

1. Construct a mesh T̃ in Rd on the elastic domain Ω in which the implicit surface Γ will be embedded. Let xN
denote the vector of coordinates in T̃ .

2. Create a set of surfaces functions {ρ(x)} in the same way as in the previous algorithm.
3. Discretize the distance functions {φ} = {ρ(xN )} by evaluating all functions in the set {ρ} in the nodes of the

complete underlying mesh T̃ .
4. Find the sets {Th} that are intersected by the surfaces such that for each {φ}i there exists a corresponding set of cut

elements {Th}i .
5. Follow the same approach as described in the previous algorithm to extract the zero surface information for each

{Th}i .
6. Create a discrete system of equations for the bulk elasticity problem. While assembling the bulk stiffness matrix,

for each element that is cut by the membrane surface, compute the membrane element stiffness and add it to the
global bulk stiffness matrix. Note that no stabilization is needed in this case since the surrounding elements create
a well conditioned stiffness matrix.

7. Solve the linear system.

4. Numerical examples

In this Section we show convergence comparison on some geometries for which we can compute the solutions
analytically. We compare the convergence rates of this approach with a triangulated surface. Numerical examples are
given for both tetrahedral and hexahedral elements. Since all geometrical shapes of the cuts inside the 3D elements
are divided into triangles, the numerical integration of the membrane bilinear form ah(·, ·) was performed using one
point Gaussian integration on these triangles.
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(a) Underlying linear tetrahedral mesh. (b) Zero level iso-surface.

Fig. 7. Displacement field on a tetrahedral mesh (×10 enlarged).

(a) Underlying linear hexahedral mesh. (b) Zero level iso-surface.

Fig. 8. Displacement field on a hexahedral mesh (×10 enlarged).

The mesh size is defined by:

h :=
1

3
√

N

where N denotes the total number of nodes on the underlying 3D mesh Th , which is uniformly refined.

4.1. Pulling a cylinder

Comparing this approach to the approach previously done by Hansbo and Larson [5], we consider a cylindrical
shell of radius r and thickness t , with open ends at x = 0 and x = L and with fixed axial displacements at x = 0 and
radial at x = L , carrying an axial surface load per unit area

f (x, y, z) =
F

2πr

x

L2 ,

where F has the unit of force. The resulting axial stress is

σ =
F(1 − (x/L)2)

4πr t
.

We consider the same example as was used in [5] and choose r = 1, L = 4, E = 100, ν = 1/2, t = 10−2 and
F = 1.

In Fig. 7 we show the solution (enlarged 10 times) on a given tetrahedral mesh and in Fig. 8 the corresponding
solution on a hexahedral mesh with the same mesh size. In Fig. 9 we show the L2(Σ ) error in stress, ∥σ −σ h∥, where
σ := σΓ (u) and σ h := σΓ (uh). See Table 1 for convergence rates.
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Table 1
Convergence of the cylinder.

Element type Mesh size ∥σ − σh∥ Rate

Tetrahedral
unstructured

0.0899 1.7959 –
0.0481 0.7733 1.3498
0.0260 0.4017 1.0650

Tetrahedral
structured

0.1330 5.7545 –
0.0721 2.1916 1.5749
0.0376 0.6846 1.7903
0.0192 0.2550 1.4722

Hexahedral

0.1644 2.8832 –
0.0899 1.4008 1.1954
0.0472 0.6698 1.1438
0.0242 0.3228 1.0924

Original
0.1565 0.7580 –
0.0783 0.3793 0.9998
0.0392 0.1897 1.0015

Fig. 9. Stress convergence comparison for the cylinder.

(a) Displacement field on the underlying mesh
(Exaggerated lengths).

(b) Displacement field on the extracted linear
zero level iso-surface.

Fig. 10. Mesh dependent errors on low resolution linear tetrahedral mesh.

Mesh dependent errors occur in a structured tetrahedral mesh case due to the directionality of the mesh, which
induces artificial direction-dependent stiffnesses, see Fig. 10; note that the error becomes less prominent with a finer
mesh. This error can be avoided by using an unstructured tetrahedral mesh, see Fig. 11; also, this error does not occur
in the hexahedral case, see Fig. 12.
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(a) Underlying displacement field. (b) Surface displacement field.

Fig. 11. Displacement fields on unstructured tetrahedral mesh.

Fig. 12. Displacement field on the underlying tri-linear hexahedral mesh (×10 enlarged).

Fig. 13. Displacement field on the extracted linear zero level iso-surface from a linear tetrahedral mesh (×10 enlarged).

Table 2
Convergence of the oblate.

Element type Mesh size Number of DOFs ∥σ − σh∥ Rate

Tetrahedral
0.0790 2414 0.1493 –
0.0474 7218 0.0800 1.2222
0.256 26961 0.0425 1.0261

Structured, triangular
0.0198 2562 0.0242 –
0.0099 10242 0.0121 1.0004
0.0049 40962 0.0061 0.9882

Unstructured, triangular
0.0198 2562 0.0288 –
0.0099 10242 0.0147 0.9707
0.0049 40962 0.0078 0.9144

4.2. Pulling an oblate spheroid

Again we use the same example as in [5] and set the exact solution to be u = (x, 0, 0) and compute the stress and
then the corresponding load from (3). We set the parameters E = 1, ν = 1/2, and t = 1. The computed displacement
field can be seen in Fig. 13. Compared to the previous work in [5], the superparametric stabilization method is not
needed in this approach since we already stabilize using the term jh(·, ·). A stress convergence comparison can be
seen in Fig. 14. The convergence rates can be seen in Table 2.
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Fig. 14. Convergence of stress.

Fig. 15. Elastic beam without embedded elastic membrane.

Fig. 16. Elastic beam with embedded elastic membrane.

4.3. Membrane embedded in elastic material

A rectangular box (0 ≤ x ≤ 2 and 0 ≤ y, z ≤ 1) has a surface load, f = 1, applied in the positive x direction at
x = 2. The bulk material has the following properties, E = 100, ν = 0.5. The membrane has E = 1000, ν = 0.5
and t = 0.01. Fig. 15 shows a displacement plot (40×enlarged) of the elastic bulk material without any embedded
membrane. Fig. 16 shows the same displacement plot but with 8 embedded membrane surfaces. The surfaces are
visualized in Fig. 17.

Finally, in Figs. 18 and 19 we show the effect on displacements resulting from inserting a circular membrane into
a beam in bending. The material properties are the same as in the previous example. We note the marked increase in
bending stiffness resulting from the added membrane stiffness.

5. Concluding remarks

In this paper we have introduced an FE model of curved membranes using higher dimensional shape functions that
are restricted to (the approximation of) the membrane surface. This allows for rapid insertion of arbitrarily shaped
membranes into already existing 3D FE models, to be used for example for optimization purposes. We have shown
numerically that the cut element approach to membranes gives errors comparable to triangulated membranes, using the
same degree of approximation, and we have proposed a stabilization method which provides stability to the solution
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Fig. 17. Elastic beam with embedded elastic membrane.

Fig. 18. Elastic beam in bending without embedded elastic membrane.

Fig. 19. Elastic beam in bending with embedded elastic membrane.

as well as giving the right conditioning of the discrete system, allowing for arbitrarily small cuts in the 3D mesh.
The novelties of our approach are: (1) applying for the first time the cut element approach of [6] to models of thin
elastic structures, and (2) modeling membranes embedded in a 3D bulk material with arbitrary orientation of the
membrane relative to the meshing of the bulk. In future work, we will consider more realistic models of embedded
membranes.
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