تلفن: ۰۴۱۴۲۲۷۳۷۸۱
تلفن: ۰۹۲۱۶۴۲۶۳۸۴

ترجمه مقاله دسته بندی داده های بزرگ با استفاده از دسته بندی کننده های SVM

عنوان فارسی: دسته بندی داده های بزرگ با استفاده از دسته بندی کننده های SVM به وسیله الگوریتم اصلاح شده بهینه سازی ازدحام ذرات و مجموعه های SVM
عنوان انگلیسی: Big Data Classification Using the SVM Classifiers with the Modified Particle Swarm Optimization and the SVM Ensembles
تعداد صفحات مقاله انگلیسی : 19 تعداد صفحات ترجمه فارسی : 45 (1 صفحه رفرنس انگلیسی)
سال انتشار : 2016 نشریه : Thesai
فرمت مقاله انگلیسی : pdf فرمت ترجمه مقاله : pdf و ورد تایپ شده با قابلیت ویرایش
فونت ترجمه مقاله : بی نازنین سایز ترجمه مقاله : 14
نوع مقاله : ISI پایگاه : اسکوپوس
نوع ارائه مقاله : ژورنال شاخص H_index مجله : 3 در سال 2019
شاخص SJR مجله : 0.000 در سال 2018 شناسه ISSN مجله : 2158-107X
کد محصول : 10218 وضعیت ترجمه : ترجمه شده و آماده دانلود
محتوای فایل : zip حجم فایل : 2.79Mb
رشته و گرایش های مرتبط با این مقاله: مهندسی کامپیوتر، مهندسی الگوریتم ها و محاسبات، رایانش ابری
مجله: مجله بین المللی علوم پیشرفته رایانه و کاربردهای آن - International Journal of Advanced Computer Science and Applications
دانشگاه: موسسه فن آوری مسکو، مهندسی رادیویی ایالت ریازان، دانشگاه مسکو ، روسیه
کلمات کلیدی: داده‌های بزرگ، دسته‌بندی، مجموعه، دسته‌بندی‌کننده SVM، نوع تابع هسته، پارامترهای تابع هسته، الگوریتم بهینه‌سازی ازدحام ذرات، پارامتر تنظیم‌، بردارهای پشتیبان
کلمات کلیدی انگلیسی: Big Data - classification - ensemble - SVM classifier - kernel function type - kernel function parameters - particle swarm optimization algorithm - regularization parameter - support vector
وضعیت ترجمه عناوین تصاویر و جداول: ترجمه شده است ✓
وضعیت ترجمه متون داخل تصاویر و جداول: ترجمه شده است ✓
وضعیت ترجمه منابع داخل متن: به صورت عدد درج شده است ✓
وضعیت فرمولها و محاسبات در فایل ترجمه: به صورت عکس، درج شده است
ضمیمه: ندارد
بیس: نیست ☓
مدل مفهومی: ندارد ☓
پرسشنامه: ندارد ☓
متغیر: ندارد ☓
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
رفرنس در ترجمه: در داخل متن و انتهای مقاله درج شده است
doi یا شناسه دیجیتال: https://doi.org/10.14569/IJACSA.2016.070541
ترجمه این مقاله با کیفیت عالی آماده خرید اینترنتی میباشد. بلافاصله پس از خرید، دکمه دانلود ظاهر خواهد شد. ترجمه به ایمیل شما نیز ارسال خواهد گردید.
فهرست مطالب

چکیده

1.مقدمه

2. دسته‌بندی‌کننده ماشین بردار پشتیبان

3. الگوریتم اصلاح شده بهینه‌سازی ازدحام ذرات

4. مجموعه ماشین بردار پشتیبان

5. دسته‌بندی‌کننده دوسطحی ماشین بردار پشتیبان

6. مطالعات آزمایشی

نمونه متن انگلیسی

Abstract

The problem with development of the support vector machine (SVM) classifiers using modified particle swarm optimization (PSO) algorithm and their ensembles has been considered. Solving this problem would allow fulfilling the highprecision data classification, especially Big Data classification, with the acceptable time expenditures. The modified PSO algorithm conducts a simultaneous search of the type of kernel functions, the parameters of the kernel function and the value of the regularization parameter for the SVM classifier. The idea of particles' «regeneration» served as the basis for the modified PSO algorithm. In the implementation of this algorithm, some particles change the type of their kernel function to the one which corresponds to the particle with the best value of the classification accuracy. The offered PSO algorithm allows reducing the time expenditures for the developed SVM classifiers, which is very important for Big Data classification problem. In most cases such SVM classifier provides the high quality of data classification. In exceptional cases the SVM ensembles based on the decorrelation maximization algorithm for the different strategies of the decision-making on the data classification and the majority vote rule can be used. Also, the two-level SVM classifier has been offered. This classifier works as the group of the SVM classifiers at the first level and as the SVM classifier on the base of the modified PSO algorithm at the second level. The results of experimental studies confirm the efficiency of the offered approaches for Big Data classification.

نمونه متن ترجمه

چکیده

مسئله طراحی دسته‌بندی‌کننده‌های ماشین بردار پشتیبان (SVM) با استفاده از الگوریتم اصلاح‌شده بهینه‌سازی ازدحام ذرات (PSO) و مجموعه‌های آن‌ها در این مطالعه مورد بررسی قرار گرفته است. حل این مسئله امکان اجرای دسته‌بندی داده‌ها با دقت بالا به خصوص دسته‌بندی داده‌های بزرگ (Big Data) را با صرف زمان قابل‌قبول فراهم می‌سازد. الگوریتم اصلاح‌شده PSO به جستجوی همزمان نوع توابع هسته، پارامترهای تابع هسته و ارزش پارامتر تنظیم‌ در دسته‌بندی‌کننده SVM می‌پردازد. طرح بازتولید ذرات به عنوان مبنای الگوریتم اصلاح‌شده PSO عمل نموده است. در پیاده‌سازی این الگوریتم، برخی ذرات، نوع تابع هسته خود را به تابعی که با ببشترین دقت دسته‌بندی با ذره مطابقت می‌کند، تغییر می‌دهند. الگوریتم ارائه‌شده PSO امکان کاهش مدت زمان صرف‌شده برای دسته‌بندی‌کننده‌های طراحی‌شده SVM که برای مسئله دسته‌بندی داده‌های بزرگ بسیار مهم است، فراهم می‌سازد. در اکثر موارد، این‌گونه دسته‌بندی‌کننده SVM کیفیت بالایی از دسته‌بندی‌ داده‌ها را ارائه می‌دهد. در موارد استثنایی می‌توان از مجموعه‌های SVM مبتنی بر الگوریتم بیشینه‌سازی غیرهمبستگی برای راهبردهای مختلف تصمیم‌گیری در مورد دسته‌بندی داده‌ها و قاعده رأی اکثریت استفاده کرد. علاوه بر این، دسته‌بندی‌کننده دوسطحی SVM نیز ارائه شده است. این‌نوع دسته‌بندی‌کننده به عنوان گروه دسته‌بندی‌‌کننده‌های SVM در سطح اول و به عنوان دسته‌بندی‌کننده SVM بر مبنای الگوریتم اصلاح‌شده PSO در سطح دوم عمل می‌کند. نتایج مطالعات آزمایشگاهی بر اثربخشی روش‌های ارائه‌شده جهت دسته‌بندی داده‌های بزرگ مهر تأیید می‌زند.