4. Conclusions and implications
The results of this study demonstrate that geologic setting and anthropogenic change to groundwater geochemistry combine to influence groundwater phosphorus concentrations. Although groundwater throughout the geologic regions had some elevated nitrate concentrations, only groundwater from the lower Cambrian showed an association between higher phosphorus and elevated nitrate. In the more carbonate-rich upper Cambrian/Ordovician groundwater, increased nitrate concentrations were accompanied by increases in calcium, magnesium and alkalinity, as expected from accelerated weathering of carbonate minerals, but there was no associated increase in the groundwater phosphorus concentrations. In contrast, groundwater sampled from the lower Cambrian bedrock displayed a weaker relationship between nitrate and calcium, magnesium and alkalinity but a marked increase in groundwater phosphorus with elevated nitrate. These results are consistent with anthropogenic acidity leading to phosphorus mineral weathering beyond zones where secondary minerals would retain phosphorus. This suggests that differences in groundwater phosphorus concentrations at the watershed-scale reflect contrasts in the spatial distribution of bedrock phosphorus and rock weathering that control major ion chemistry. These results have important implications for the transfer of terrestrial phosphorus to surface waters. In our study area, we found groundwater phosphorus concentrations could be increased by a factor of five at a nitrate concentration of 10 mg N L1 . Because phosphorus-containing mineral phases have relatively wide occurrence within Cambrian bedrock, groundwater phosphorus may be an increasingly important component of phosphorus transfer from terrestrial to aquatic systems as anthropogenic geochemical change impacts a larger proportion of groundwater aquifers. Increased transport of phosphorus at a watershed scale would pose an important challenge to surface water management at decadal time scales as these changes propagate through aquifers, and downstream water resource systems are affected by changes in groundwater chemistry.