7. Conclusions
A framework for aerodynamic shape optimization under uncertainty was presented. The optimal design minimizes a measure of the drag coefficient that is robust to uncertainties, subject to the lift coefficient reliability constraint. The multi-dimensional inFig. 10. Optimal airfoil shape obtained for the RoRe design cases for either flowrelated uncertainties or both types of uncertainties. Table 3 Comparison of the objective function value, mean value, standard deviation and probability of failure for the RoRe design cases taking into account either flowrelated uncertainties only or both types of uncertainties. CD (μc ) μCD σCD P f flow 0.00369 0.00505 0.00333 0.01 flow & geometry 0.00378 0.00479 0.00256 0.01 tegrals for the mean and standard deviation of the drag coefficient were computed by the sparse grid technique, while the reliability was computed using FORM. The design parameters were the coordinates of the Bézier control points parameterizing the airfoil shape. The uncertain parameters were the flow conditions (Mach number and angle of attack) and the coordinates of the Bézier control points (design variables), accounting through the airfoil contour parameterization for the geometric variabilities of the airfoil. The sensitivities of the robust measure of the drag coefficient and the lift reliability constraint with respect to the design variables and uncertain parameters were computed by the discrete adjoint approach to the Euler equations, substantially reducing the number of flow solutions to the solution on the forward and the adjoint equations, thus making the computational effort independent of the number of design variables and uncertain parameters. In parallel implementation of the proposed optimal shape optimization algorithm, the time-to-solution, which depends on the solution of the forward and adjoint flow equations, scales with the number of iterations required to estimate the FORM “design” point in the uncertain parameter space and it is independent of the number of sparse grid points.