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A methodology for shape optimization of aerodynamic bodies under uncertainties is presented. Flow-
related and geometrical uncertainties are considered and quantified by probability distribution functions.
The optimal shape is computed by minimizing a robust estimate of the drag coefficient subject to
reliability constraint for the lift coefficient. The robust drag is formulated as a weighted sum of the mean
and the standard deviation of the drag coefficient over the space of uncertain parameters. The mean and
standard deviation of the drag coefficient are computed using sparse grid techniques. The lift reliability,
defined by the probability the lift coefficient is lower than a reference value, is computed using First
Order Reliability Method (FORM). A gradient-based optimization algorithm is used to obtain the optimal
shape. The sensitivity derivatives of robust drag measure and the lift reliability with respect to the shape
controlling and flow related design parameters as well as the uncertain parameters are computed using
the adjoint problem for the flow. The methodology is applied to pure aerodynamic shape optimization,
comparing optimal designs that arise from the formulation to optimal designs that correspond to special
cases, including the case of no uncertainties. A 2D airfoil case is designed based on the Euler equations
under uncertain Mach number and angle of attack and geometric variability.
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1. Introduction

The availability of powerful Computational Fluid Dynamics
(CFD) models has allowed the scientific community to investigate 
and develop a variety of algorithms applied to shape optimization, 
optimal active flow control with suction-blowing jets, topology op-
timization, etc. However, the resulting optimal design lacks good 
performance when the values of some parameters of the problem 
are uncertain or may vary within a range. Optimal designs based 
on a single value of the models parameters are very sensitive to 
uncertainties in the parameters in the sense that the performance 
deteriorates considerably in the neighborhood region where the 
parameters are likely to take values. Thus, the optimal design 
should take into account the variability or uncertainties of such 
parameters [51,50,46,45] by minimizing an overall measure of the 
performance over all possible values of the uncertain parameters 
and the sensitivity of performance to uncertainties. A multi-point 
optimization approach has been introduced to account for uncer-
tainties by computing the performance in multiple points in the 
uncertain parameter space [34,16,23,35].
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Probability distribution functions (PDFs) are often used to quan-
tify uncertainties in simulations and probability calculus is ap-
plied to propagate the uncertainties in output quantities of interest 
(QoI). In design optimization the output QoI are associated with 
system performance measures involved in the objective function 
or the constraints. The mean and standard deviation are conve-
niently used as simple measures of uncertainty in QoI. Thus, the 
obvious choice in design optimization under uncertainties would 
be to minimize the mean value of the performance function and 
the standard deviation over the range of possible values of these 
uncertain parameters [39,41].

The mean and standard deviation are formulated as multi-
dimensional integrals in the uncertain parameter space. The com-
putation of these multidimensional integrals may be based on 
deterministic or stochastic approaches, including derivative-based, 
sampling and grid-based approaches. The derivative-based robust 
design uses a Taylor or asymptotic expansion and the multi-
dimensional integrals are approximated by expressions that in-
volve the first and second derivative of the performance variables 
with respect to the uncertain parameters [39,41,42,27,36]. Such 
approaches are quite fast, but lack accuracy in cases of large un-
certainties, or in cases where the linearization of the performance 
function in the uncertain parameter space is not adequate such as 
in the case of transonic flow.
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Stochastic approaches for the estimation of the statistical mo-
ments are usually based on advanced Monte-Carlo (MC) methods 
[27,49,19] which are costly due to the very large number of anal-
yses on the sample points required to compute these integrals. 
In addition, the sample estimates of the integrals are non-smooth 
functions of the design variables due to the variability of the sam-
ples between design points, complicating the use of gradient-based 
optimization algorithms over the uncertain parameter space. The 
grid-based approaches [8] are more accurate for the estimation 
of the uncertainties but they usually require a large number of 
CFD evaluations on the predefined grid nodes. The sparse-grid ap-
proach [47,14,5] is a remedy to the numerous required evaluations, 
substantially reducing the number of grid points and thus the 
computational cost in relation to grid-based and Gauss quadrature 
techniques. Using grid-based techniques, the multi-dimensional in-
tegrals for the mean and standard deviation become smooth func-
tions of the design variables.

Uncertainties should also be taken into account for the estima-
tion of the constraints involved in design optimization. The con-
straints should be satisfied for all possible values of the uncertain 
model parameters, an implementation that is not practical to carry 
out in most problems. Using PDF to quantify uncertainties and tak-
ing into account that the performance objective competes with the 
constraints, the requirement to satisfy the constraint at all possible 
values of the model parameters, even the values with relatively 
small plausibility based on the assigned PDF, results in signifi-
cant deterioration of the system performance. In [45] for problems 
of shape optimization under uncertainty in CFD, the constraints 
are satisfied in the grid points used to approximate the multi-
dimensional integrals involved in the robust performance measure. 
The drawback of this approach is that it fails to provide an over-
all measure of constrained violation over the parameter space. An 
alternative rational approach is to require that the constraint not 
to be violated with a given probability, formulating the constraint 
in terms of a reliability or, its complement, the probability of 
unacceptable performance. First-order reliability methods (FORM) 
[10,9] are most often used to approximate the resulting multi-
dimensional reliability integrals over the domain in the uncertain 
parameter case where the performance criteria for the constraint 
are violated [28,30,21,13].

The optimal design under uncertainties is often formulated as a 
problem of minimizing a weighted average of the mean value and 
standard deviation of a performance function subject to the relia-
bility constraints expressed in terms of the probability of unaccept-
able performance is lower than a small given probability value. In 
structural mechanics problems, the formulation has been applied 
for sizing, shape and topology optimization [30,20,17]. In CFD, the 
design optimization under uncertainties with reliability constraints 
may be found in the literature, almost exclusively for problems re-
lated with structural constraints in reliability-based aerostructural 
optimization problems. In [32], the wing mass and lift over drag 
ratio is minimized subject to probabilistic constraints on struc-
tural stresses using the FORM methodology. [11] applies a support 
vector machine method for the minimization of the probability 
of failure in stability (flutter) aeroelastic problems. The only flow 
related reliability-based shape optimization where the probability 
that the lift to drag ratio is lower than a given value, is computed 
and minimized may be found in [1], where the constraint is de-
fined by the probability that the maximum stress exceeds another 
given threshold. The uncertain parameters are the angle of attack 
and the thickness of the wing plate and FORM is used to evaluate 
the reliability integral with respect to the two uncertain parame-
ters.

This study presents a methodology for shape optimization of 
aerodynamic bodies by minimizing a robust measure of the drag 
coefficient under reliability constraint on the lift coefficient. The 
objective function is formulated as a weighted sum of the mean 
and the standard deviation of the drag coefficient. Minimizing the 
mean assures the smallest possible drag, while minimizing the 
standard deviation assures an optimal design corresponding to a 
drag value that is the least sensitive to parameter uncertainties. 
The sparse grid method is used to compute the mean and the 
standard deviation of the drag coefficient values at the grid points 
in the parameter space. The sparse grid approach based on differ-
ent PDFs can be considered as a multipoint approach, although the 
sparse grid differs from the multipoint approaches [24] on the se-
lection of the grid points to be consistent with the underline PDF 
and convenient to efficiently compute the statistical moments of 
the output quantities of interest. One of the contributions of this 
work is to impose the aerodynamic constraints on the lift coeffi-
cient in a probabilistic manner, requiring that the probability the 
lift coefficient is less than a reference value, denoted here as the 
probability of unacceptable performance, be bounded by a small 
user-defined probability. The FORM is used to estimate the prob-
ability of unacceptable performance or “failure” probability using 
the design point in the parameter space. A gradient-based ap-
proach is used to solve the constraint optimization problem. The 
adjoint approach for the underlining flow is applied for the compu-
tation of the first-order derivatives of the mean and the standard 
deviation as well as the probability of unacceptable performance 
with respect to the shape controlling parameters and the uncertain 
parameters, making the computation of sensitivities independent 
of the number of design variables and uncertain parameters.

The method is applied to the robust optimization of the shape 
of the RAE 2822 airfoil, the aerodynamic optimization of which 
has been presented in [45,22,6]. The shape is parameterized us-
ing Bézier control points [25]. The coordinates of these control 
points as well as the mean value of the angle of attack are consid-
ered as the design parameters to be optimized. The uncertainties 
considered are the values of the Mach number and the angle of 
attack as well as the geometrical uncertainties. Unlike existing ge-
ometry parameterization and uncertainty quantification schemes, 
in the present work the geometric variability is modeled by postu-
lating PDFs to quantify uncertainties in the location of the control 
points. The proposed design optimization framework under uncer-
tainties is illustrated for a 2D transonic flow governed by the Euler 
equations. The modeling using the Euler equations is for demon-
stration purposes, since the inviscid model does not always yield 
physically significant results [26]. The method of moving asymp-
totes (MMA) algorithm [48] is used to solve the constrained opti-
mization problem. The importance of considering uncertainties, the 
effect of the type and magnitude of uncertainties, as well as the ef-
fect of the bound on the lift coefficient probability in the optimal 
design is investigated. The formulation for the robust aerodynamic 
optimization, minimizing a robust measure of the drag coefficient, 
under a reliability-based aerodynamic constraint imposed on the 
lift coefficient, constitutes the main contribution of this paper. The 
performance of the proposed robust drag optimization under lift 
reliability constraint is evaluated by comparing results with the 
ones obtained from the sole robust optimization, sole reliability-
based optimization and deterministic optimization.

2. Aerodynamic shape optimization

2.1. Formulation of shape optimization neglecting uncertainties

In deterministic aerodynamic optimization the objective func-
tion to be minimized is usually the drag coefficient C D (ρ) con-
strained by the lift coefficient CL(ρ) not to exceed a predefined 
value, where ρ = (ρ g, ρ f ) are the design variables, i.e. the ge-
ometrical variables ρ g controlling the shape of the aerodynamic 
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body such as the shape of an airfoil as well as flow related vari-
ables ρ f such as the angle of attack. The constrained optimization 
problem is defined as [23,46]

min
ρ

C D(ρ) (1a)

s.t. CL(ρ) ≥ CL,ref (1b)

where the drag coefficient C D and lift coefficient CL are given by

C D = D
1
2 ρ̄ v̄2 A

, CL = L
1
2 ρ̄ v̄2 A

(2)

with the drag D and lift forces L defined by the integrals over the 
airfoil contour S from the expressions

D =
∫

S

pnikidS, L =
∫

S

pnilidS (3)

Also, p is the pressure value, ni are the components of the normal 
unit vector pointing toward the airfoil, ki and li are the compo-
nents of the unit vector normal and parallel to the far-field veloc-
ity v̄ , respectively, ρ̄ is the far-field density and A is the airfoil 
chord.

The geometrical design variables ρ g included in ρ consist of 
either the wall boundary nodes of the computational grid or the 
control point coordinates of a parameterization scheme [43,37]. 
In the former case, a smoothing function should be employed 
in order to certify that the obtained aerodynamic geometry is 
smooth [43]. In the case of a parameterization scheme [37], the pa-
rameterization functions make sure that the geometry is smooth. 
In this study, the Bézier parameterization [25] has been employed 
and the design parameter vector ρ g contains the (x, y) coordinates 
of the Bézier control points that parameterize the aerodynamic 
shape. Also, the mean value of the angle of attack is considered 
as a design variable ρ f to be optimized mainly to control the lift 
related constraint.

2.2. Modeling of uncertainties

In aerodynamic shape optimization the most important uncer-
tainties are the flow related ones, arising from the different range 
of operation conditions related to the Mach number and angle 
of attack, as well as Reynolds number for a viscous flow mod-
eled by the Navier–Stokes equations. Geometrical uncertainties due 
to lack of knowledge of the exact geometry of the aerodynamic 
shape owing to manufacturing imprecision, etc., are also important 
and should be considered. In the case of using a RANS turbulence 
models, the values of the parameters of the model should be con-
sidered as uncertain and handled together with the flow related 
and geometrical uncertainties. Last but not least, are the uncer-
tainties associated with the values of the medium properties such 
as viscosity and density.

Optimal designs based on nominal values of the model pa-
rameters lack robustness to variations in the nominal values. The 
optimal shape should be designed to be insensitive to variations 
in the values of the model parameters that may result either from 
the different operation conditions on the Mach and angle of attack, 
manufacturing variability in the airfoil shape, etc. The objective of 
the design optimization under uncertainties is to estimate the op-
timal shape that is robust to uncertainties in the parameter values, 
meeting at the same time the lift constraints for all possible values 
of the uncertain model parameters.

Parameter uncertainties are quantified by PDFs and spatially 
varying uncertainties are quantified by random fields. The vector 
θ is introduced to contain the uncertain parameters related to the 
flow conditions, such as Mach, angle of attack and Reynolds num-
ber, the medium properties such as viscosity and density, as well 
as other parameters associate for example with the RANS turbu-
lence models. The uncertainties in these parameters are quantified 
by assigning a PDF p(θ) over the domain (support) of variation 
of these parameters, quantifying how plausible is each possible 
value of these parameters. For a number of parameters in θ , such 
as Mach, Reynolds number and angle of attack, the uncertainties 
are usually postulated to be representative of the variability ex-
pected during operation based on engineering judgment. For other 
parameters, such as the turbulence model parameters, the uncer-
tainties can be quantified by experimental measurements using for 
instance Bayesian techniques [40,2,33,7,12].

The spatial uncertain variability of the airfoil shape is often 
quantified by random fields [45] which can be discretized using 
Karhunen–Loève [15] and represented by a set of random vari-
ables. The inclusion of geometrical uncertainties in the aerody-
namic shape optimization procedure has been presented in [45]
without, however, dealing with reliability constraints. Using Bézier 
control points to parameterize the airfoil suction and pressure 
sides through the Bernstein polynomials, the uncertain parameters 
are the coordinates (x, y) of the control points. At the same time 
these coordinates are part of the design parameters ρ to be opti-
mized. Thus, the spatial distribution of geometric uncertainties is 
modeled through the uncertainties in the location ρ g of the con-
trol points. Specifically, the uncertainty in the spatial distribution 
of the geometrical control parameters ρ g is quantified by a ran-
dom vector ρ̃ g such that

ρ̃ g = ρ g + η (4)

where η is considered to be a zero-mean Gaussian random vec-
tor with covariance � selected to quantify the uncertainty of the 
design variables about their mean value ρ g . To account for cor-
relation in the uncertainty between control points, the covariance 
matrix is chosen to be non-diagonal. Herein, an exponentially de-
caying spatial correlation structure is assumed so that the (i, j)
component is given by �i j = σ 2exp 

(
− ri j

λ

)
, where σ and λ are the 

user defined standard deviation and spatial correlation length, and 
ri j is a measure of the distance between the control points i and j. 
The zero-mean Gaussian vector η can be obtained from the expan-
sion

ηi =
M∑

q=1

√
λqziqϕq (5)

where λq and ziq are respectively the q-th eigenvalue and the (i, q)

component of the matrix of eigenvectors of the covariance matrix 
�, ϕ = (ϕ1, . . . , ϕM) are standard Gaussian random variables quan-
tifying the uncertainty in geometry, and M denotes the number 
of most important terms in the expansion retained that corre-
spond to the highest eigenvalues of the covariance matrix. Using 
the linear relationship [25] between the spatial distribution of the 
points along the airfoil profile and the Bézier control points, the 
properties of the Gaussian random field characterizing the spatial 
distribution of the variability in the airfoil profile can be readily 
obtained.

In this study, without loss of generality for the theory pre-
sented, the Euler equations for the 2-D compressible inviscid flows 
are solved and flow-related uncertainties as well as airfoil geo-
metrical uncertainties are considered. Thus the vector of uncertain 
parameters v = (θ , ϕ) includes the uncertain flow conditions θ
(Mach number and angle of attack) and the vector of variables ϕ , 
that corresponds to the geometrical uncertainties. Without loss of 
generality, a Gaussian distribution is also assumed for the flow 
conditions. Although in this study the uncertain parameters are 
assumed to follow a Gaussian distribution, different distributions 
may be also accounted using the appropriate quadrature rule. Also, 
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a histogram (which amounts to a PDF) can be constructed, based 
on actual flight conditions [24].

2.3. Formulation of shape optimization under uncertainties

The output flow quantities such as drag coefficient C D(ρ, v)

and lift coefficient CL(ρ, v) given the values of the design vari-
ables ρ are uncertain due to the uncertainty in the parameters v. 
The optimal aerodynamic shape of an airfoil under uncertainties 
should be selected to minimize a robust measure of the drag co-
efficient that takes into account the uncertainties in the model 
parameters and at the same time to be insensitive to uncertain-
ties. For this, the robust aerodynamic optimization is formulated 
as a two-objective optimization problem with the objectives being 
the expected value μC D (ρ) and standard deviation σC D (ρ) of the 
drag coefficient C D(ρ, v) with respect to uncertainties v = (θ , ϕ) in 
flow conditions (θ ) and geometrical control points (ϕ). The mean 
is used as a robust measure of the drag coefficient that takes into 
account the uncertainties in the model parameters. The standard 
deviation is used as a measure of the sensitivity of the drag coeffi-
cient to uncertainties in the model parameters, providing optimal 
shapes that are robust to variabilities in the model parameters.

The optimal shape of the airfoil should also satisfy the lift con-
straint for all possible values of the model parameters. The im-
plementation of this condition is not practical for most problems 
and may lead to substantial performance deterioration due to con-
siderable increase of the drag arising from parameter values with 
low plausibility. Alternatively, the lift constraint can be imposed in 
a probabilistic manner, requiring that the probability the lift falls 
below a reference lift value is less than an acceptably small pre-
defined probability. The optimal shape is then controlled by the 
user-assigned probability level of unacceptable performance for the 
lift.

Thus, in this study, the aerodynamic shape optimization of an 
airfoil under uncertainties in the flow conditions and geometrical 
parameters is mathematically formulated as

min
ρ

GC D (ρ) = wμC D (ρ) + (1 − w)σC D (ρ) (6a)

s.t. Pr(CL(ρ,v) ≤ CL,ref ) < P f ,0 (6b)

where the two measures for the mean and the standard deviation 
of the drag coefficient are concatenated to a single objective by 
introducing the weight w , and Pr(CL(ρ, v) ≤ CL,ref ) is the prob-
ability of failure or probability of unacceptable performance, i.e. 
the probability the lift coefficient function CL is lower than the 
reference value CL,ref . The minimization for different values of w
results in different optimal designs that form a Pareto front [27,39].

The constrained optimization problem is solved using a gra-
dient-based method, requiring the derivatives of the output flow 
quantities with respect to design variables and uncertain parame-
ters. The methodology for the computation of the function GC D (ρ)

and its derivatives with respect to the shape controlling design 
parameters ρ is exposed in Section 3.1. The estimation of the prob-
ability P (CL(ρ,v) ≤ CL,ref ) and its derivatives with respect to the 
design parameters is described in Section 3.2. The derivatives of 
GC D (ρ) and P (CL(ρ,v) ≤ CL,ref ) with respect to the design vari-
ables ρ require the sensitivities of the drag and lift coefficient 
functions with respect to the design and uncertain parameters. The 
adjoint approach to compute such sensitivities is presented in Sec-
tion 4.

3. Robust performance and reliability constraint

3.1. Robust drag

The mean and standard deviation of the objective function 
in (6a) are given in terms of the first two statistical moments 
μ̄γ ,C D (ρ), γ = 1, 2 of the multidimensional performance function 
C D(ρ, v) as

μC D (ρ) = μ̄1,C D (ρ) and σC D (ρ) =
√

μ̄2,C D (ρ) − μ2
C D

(ρ)

(7)

where

μ̄γ ,C D (ρ) =
∫

V

[C D(ρ,v)]γ p(v)dv (8)

The robust shape optimization requires the computation of the 
multi-dimensional integrals (8) for γ = 1, 2. Assuming that the 
PDF p(v) of the uncertain parameters is Gaussian, the Gauss–
Hermite quadrature on sparse grids [47,5,14] is used to approxi-
mate the integrals in the form [14]

∫

V

[C D(ρ,v)]γ p(v)dv �
n∑

k=1

wkC D
γ (ρ,vk) =

n∑
k=1

wkCγ
Dk

(ρ) (9)

where vk are the locations of the grid points in the uncertain pa-
rameter space and wk are weighting coefficients, both depending 
on the order of the sparse grid formulation. CD = (C D 1, . . . C D n)

and C Dk (ρ) ≡ C D(ρ, vk) is the value of the function C D evaluated 
at the design variable value ρ and the value vk of the uncertain 
parameter vector at the grid or sample points vk , k = 1, . . . , n in 
the uncertain parameter space. Alternatively, using MC methods, 
the sample estimates of the multidimensional integrals for the first 
two moments are given by (9), where vk are the samples generated 
from the PDF p(v).

The robust objective function GC D (ρ) is thus given as a function 
of the performance values C D 1, . . . , C D n evaluated at the sparse 
grid or sample points, as follows

GC D (ρ) = w μ1,C D (ρ) + (1 − w)

√
μ2,C D (ρ) − μ2

1,C D
(ρ) (10)

The first order sensitivities of GC D (ρ) with respect to the design 
parameters ρ = (ρ1, . . . , ρN )T , where N is the number of design 
variables, required in the gradient-based optimization algorithm, 
are given by

∂GC D (ρ)

∂ρi
=

n∑
k=1

∂GC D

∂C Dk

∂C Dk

∂ρi
=

n∑
k=1

ak
∂C D(ρ,vk)

∂ρi
(11)

where the coefficients ak , given by

ak = ∂G(CD)

∂C Dk
= w wk + (1 − w)wk

C Dk − μ1,C D (CD)

σC D (CD)
(12)

depend on the value of the performance function C D k = C D(ρ, vk)

at the grid points k = 1, . . . , n. The sensitivities of GC D (ρ) with re-
spect to the design variables ρ depend on the sensitivities of the 
performance function C D(ρ, v) in (11) with respect to the design 
variables ρ , evaluated at the grid or sample points vk . These sen-
sitivities are computed using the adjoint formulation for the flow 
as described in Section 4.

3.2. Lift reliability

The probability the lift coefficient CL(ρ, v) is lower than a pre-
defined reference value CL,ref is given by

P f (ρ) ≡ Pr(CL(ρ,v) < CL,ref ) = Pr(h(ρ,v) < 0)

=
∫

h(ρ,v)<0

p(v)dv (13)
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where h(ρ, v) = CL(ρ, v) − CL,ref is the limit state function in re-
liability terminology [10]. Using FORM, P f (ρ) is approximated by 
the expression [10]

P f (ρ) ≈ 
(−β(ρ)) (14)

where 
 is the standard normal cumulative distribution function 
and β(ρ) is computed by the expression [9,13,1]

β(ρ) = −vT ∇vCL |v=v∗

‖∇vCL‖v=v∗
(15)

where v∗ = v∗(ρ) is the design point that is computed for given ρ
by solving the following optimization sub-problem in the uncertain 
space v = (v1, . . . , vn) of the standard Gaussian normal variables

min
v

‖v‖2 = vT v (16a)

s.t. CL(ρ,v) − CL,ref = 0 (16b)

and ‖·‖ denotes the Euclidean norm. The computation of failure 
probability and the search for the design point v∗(ρ) in the uncer-
tain parameter space using gradient-based optimization techniques 
requires the sensitivities of the lift coefficient function CL(ρ, v)

with respect to the uncertain parameters, i.e. ∂CL
∂vk

. Using the ex-
pansion (5), the sensitivity of the lift coefficient with respect to 
the uncertain parameters ϕk in v = (θ , ϕ) are given by

∂CL

∂ϕk
=

N∑
i=1

∂CL

∂ρi

√
λkzik (17)

The sensitivities of the probability of unacceptable performance 
with respect to the design variables, required to drive a descent 
optimization algorithm, are computed by [13,9,1]

∂ P f (CL)

∂ρi
= ∂
(−β(ρ))

∂ρi
= γ (ρ,v∗) ∂CL

∂ρi
(18)

where γ (ρ, v∗) is given by

γ (ρ,v∗) = − exp
(−β2(ρ)/2

)
√

2π‖∇vCL‖v=v∗
(19)

The estimation of ∂ P f (CL)

∂ρ depends on the sensitivities ∂CL
∂vk

of the 
lift coefficient CL with respect to the uncertain parameters vk , 
evaluated at the design point v∗ in the uncertain parameter space 
and the sensitivities ∂CL

∂ρ i
of the lift coefficient with respect to the 

design variables ρ . Both types of sensitivities are computed using 
the adjoint formulation as described in Section 4.

4. The adjoint method for the computation of flow sensitivities

4.1. Flow equations

The governing flow (state) equations are the Euler equations 
for 2D compressible flows. The Euler equations for a compressible 
inviscid flow are cast in tensor form as

∂Un

∂t
+ ∂ fnk

∂xk
= 0 (20)

where the Einstein notation is assumed for repeated indices and t
is the pseudo-time. The conservative variables Un and the fluxes 
fnk are given by

U =

⎡
⎢⎢⎣

U1
U2
U3
U

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ρ
ρu1
ρu2

E

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

f1k
f2k
f3k
f

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ρuk
ρu1uk + pδk1
ρu2uk + pδk2

u (E + p)

⎤
⎥⎥⎦ (21)
4 4k k
In Eq. (21), ρ , uk and E = ρe + 1
2 ρu2

k stand for the density, the ve-
locity components and total energy per unit volume, respectively. 
Also, δkm is the Kronecker symbol.

A vertex-centered finite volume method is used for the dis-
cretization of Eq. (20). Inviscid fluxes crossing the control volume 
boundaries are computed using the Roe’s upwind scheme [44].

4.2. The adjoint formulation

The sensitivity derivatives of the objective and constraint func-
tions are computed using the discrete adjoint approach. The 
derivatives of the function F (F ≡ C D or F ≡ CL ) with respect 
to the control variables b, which can be either the design vari-
ables (b ≡ ρ) or the uncertain parameters (b ≡ v), are computed 
as follows. F depends on b directly and indirectly through the 
state variables U, i.e. F = F (U(b), b). U satisfy the state equations 
R(U(b), b) = 0, which are formed by the discretization of Eq. (20).

The sensitivity derivatives of F with respect to bi are computed 
using the chain rule

dF

dbi
= ∂ F

∂bi
+ ∂ F

∂Uk

dUk

dbi
(22)

where the sensitivity fields dUk
dbi

are computed by solving the equa-
tions

dRm

dbi
= ∂ Rm

∂bi
+ ∂ Rm

∂Uk

dUk

dbi
= 0 (23)

Eqs. (22) and (23) constitute the so-called direct differentiation or 
forward approach and its cost scales with the number of control 
variables. Alternatively, one may refer to the adjoint approach. In 
that case the derivatives dF

dbi
are computed by the expression [38,

4,31]

dF

dbi
= ∂ F

∂bi
+ �m

∂ Rm

∂bi
(24)

where the so-called adjoint variables �m are computed by solving 
the adjoint equations, expressed as [38,4,31]

∂ F

∂Uk
+ �m

∂ Rm

∂Uk
= 0 (25)

The cost of the adjoint approach is independent of the number of 
design variables, being almost equal to that of solving the state 
equations.

It should also pointed out that the partial or direct sensitivi-
ties ∂ F

∂bi
, ∂ F

∂Uk
, ∂ Rm

∂bi
and ∂ Rm

∂Uk
of the objective function F and the 

residuals of the flow equations Rm with respect to the control pa-
rameters bi and the flow variables Uk , which are required in both 
the direct differentiation and the adjoint approach are computed 
using analytical expressions with a cost lower than that of solv-
ing the flow, adjoint and direct differentiation equations. However, 
for cases where analytical expressions are not available, the cost of 
computing some of the partial terms with finite differences may 
be significant, especially for 3D cases with large number of grid 
points and design variables. The cost for the computation of the 
sensitivities, Eqs. (22) and (24), is also negligible compared to the 
cost of solving the direct differentiation or the adjoint equations, 
i.e. equations (23) or (25). Also, since the cost for solving equa-
tions (23) scales with the number of design variables in contrast 
to equations (25), which have to be solved only once, irrespective 
of the number of design variables, it is obvious that the adjoint 
approach outperforms the direct differentiation one.

Using the adjoint approach the sensitivities of the objective 
function with respect to the shape controlling parameters and the 
uncertain parameters are computed at a cost independent of the 
number of these parameters.
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Algorithm 1: Pseudo-code for shape optimization under uncertainties.

% Iterative estimation of optimal values of design variables ρ
k ← 0
ρk ← Init()
while k ≤ kmax, (Outer Loop Optimization) do

% Estimate robust performance and sensitivities to design variables
for i ≤ n, (Sparse Grid Points) do

θ(i), ϕ(i) ← Sparse Grid Gauss Hermite Quadrature
η(i), ρ̃(i) ← Expansion (5) and Eq. (4)
U(i) ← Solve Flow Equations, Eq. (20)
C D(i) ← Estimation of Drag Coefficient, Eq. (2)
�(i) ← Solve Adjoint Equations, Eq. (25)
∂C D
∂b (i) ← Estimation of Drag Coefficient Sensitivities, Eq. (24)

end for
G ← Robust Performance, Eqs. (10) and (9)
∂G(CD)

∂ρ ← Robust Performance Sensitivities, Eqs. (11) and (12)
% Estimate probability of failure and sensitivities to design variables and uncertain parameters
θ, ϕ ← Init()
while m ≤ mmax, (Inner Loop for Reliability Design Point given ρk) do

U ← Solve Flow Equations, Eq. (20)
L ← Estimation of Lift Coefficient, Eq. (2)
� ← Solve Adjoint Equations, Eq. (25)
∂CL
∂θ (i) ← Lift Coefficient Sensitivities wrt Flow, Eq. (24)
∂CL
∂ϕ (i) ← Lift Coefficient Sensitivities wrt Geometry, Eq. (24)

dθ, dϕ ← Optimization Algorithm
(θ , ϕ) ← (θ , ϕ) + d(θ, ϕ)

end while
θ∗, ϕ∗ ← θ, ϕ
P f ← Probability of Failure, Eq. (14)
∂ P f (CL )

∂ρ ← Probability of Failure Sensitivities, Eq. (18)
% Update design variables
ρk ← ρk + dρ
k ← k + 1

end while
5. Pseudo-algorithm for shape optimization under uncertainties

The pseudo-code for the robust drag coefficient minimization 
with lift coefficient reliability constraint is summarized in Algo-
rithm 1.

At each iteration of the outer loop, the optimizer requires n so-
lutions of the flow and adjoint equations at the sparse grid points 
for computing the robust performance and its sensitivity with re-
spect to the design variables, as well as M solutions of the flow 
and adjoint equations at the M iteration points involved in the in-
ner loop for computing the probability of failure and its sensitivity 
with respect to the design variables and uncertain parameters. The 
n solutions of the flow and adjoint equations at the sparse grid 
or sample points are independent and can be performed in paral-
lel. Thus, the time-to-solution in a parallel implementation of the 
algorithm is the time required to solve M flow and adjoint equa-
tions. To keep M small, the starting point of the inner optimization 
loop for the current iteration is selected to be the optimal point 
found in the previous iteration. This is expected to accelerate con-
vergence to the design point with the fewer possible iterations. 
The total time-to-solution in a parallel implementation is indepen-
dent of the number of sparse grid points.

6. Application

The proposed methodology is applied to the robust aerody-
namic shape optimization with reliability constraint of an airfoil 
under uncertainties in the flow conditions and geometrical param-
eters. The symmetric RAE 2822 airfoil, which is a widely optimized 
configuration in the literature [45,6] is considered as the initial 
configuration and 13 Bézier control points are used to parame-
terize each airfoil side. The first and last control points are kept 
constant and the remaining ones are allowed to vary at the direc-
tion normal to the chord constrained within a box of dimension 
0.01. The mean value of the angle of attack is also considered as 
a design variable. Thus, the total number of design parameters is 
equal to 11 +11 +1 = 23. The initial parameterization of the airfoil 
with the Bézier points is plotted in Fig. 1.

The flow related uncertain parameters consist of the Mach 
number and the angle of attack, each one considered to follow 
a Gaussian distribution. The mean value of the Mach number is 
equal to μM = 0.73. Its standard deviation is considered equal to 
σM = 0.03 corresponding to a coefficient of variation (COV) equal 
to 4.11%. The mean value of the angle of attack is equal to μα = 2◦
with a standard deviation equal to σα = 0.2◦ , corresponding to a 
COV equal to 10%. The mean values and standard deviations are 
similar to those considered in the literature [45].

The geometrical uncertainties are taken into account by apply-
ing the expansion (5) for the design parameters that separately 
define the pressure side and the suction side of the airfoil. Us-

ing a covariance function �i j = σ 2exp 
(
− ri j

λ

)
with λ = 0.3 it can 

be demonstrated that only the first four terms in the expansion 
(5) contribute to the uncertainty. Retaining only the four highest 
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Fig. 1. Initial set of 13 per side Bézier control points parameterizing the RAE 2822 
airfoil. The first and last of them per side are kept constant and the normal to 
the chord coordinates of the remaining 11 + 11 = 22 control points constitute the 
geometrical design parameters of the problem.

Fig. 2. Derivatives of the drag coefficient with respect to the geometrical design 
parameters for the initial airfoil, using the adjoint approach and finite differences.

eigenvalues for each airfoil side (M = 4) results in a total number 
of uncertain parameters equal to 10. The standard deviation σ in 
the geometric parameters is chosen to be σ = 0.0004 so as to al-
low the shape to vary by 1% which is a reasonable value that could 
arise from manufacturing imprecisions.

The constraint for the lift coefficient is set in this case to 
CL,ref = 0.3 and the bound for probability of unacceptable per-
formance is set to P f ,0 = 0.01. Other values for this probability 
are also considered to scrutinize their effect in the optimal shape. 
A first-order sparse grid has been used to estimate the integrals 
based on Eq. (9), requiring 21 sparse grid points. Higher-order 
sparse grids made no difference in the mean value of the perfor-
mance function (less than 1% difference) and a small difference 
in its standard deviation (about 10% difference). Also, the weight 
function w in the robust objective (6a) is chosen to be equal to 0.5.

The Euler equations are solved for the transonic flow problem 
aiming mostly to illustrate the performance of the algorithm. The 
formulation can be extended for other flow cases such as a fully 
turbulent flow, by implementing an appropriate turbulence model.

6.1. Deterministic optimization

The sensitivity derivatives of the drag coefficient and the lift co-
efficient with respect to the 22 geometrical parameters are shown 
in Figs. 2 and 3, respectively, for the initial values of the design 
variables and the mean values of the uncertain parameters. The 
comparison between the implemented adjoint approach and the 
finite differences is satisfactory. The finite differences were com-
puted using a step size equal to 10−7. A step size study was 
conducted which resulted to almost exactly the same finite differ-
ences for different orders of magnitude of the step size value. The 
L2 norm of the error is equal to 0.16% for the drag and 6.3% for 
the lift coefficient. For most design parameters adjoint and finite 
difference sensitivity values agree up to 2 to 3 digits.
Fig. 3. Derivatives of the lift coefficient with respect to the geometrical design pa-
rameters for the initial airfoil, using the adjoint approach and finite differences.

Fig. 4. Optimal airfoil shape obtained by deterministic optimization, i.e. minimiza-
tion of drag coefficient constrained by minimum allowed lift coefficient, for different 
values of the Mach uncertain parameter corresponding to the first level grid points.

The deterministic optimization with deterministic constraint for 
different values of the Mach uncertain parameter has also been 
conducted to make some first observations for the different opti-
mal shapes. The values of the other uncertain parameters are kept 
constant at their mean values. The optimal airfoil shapes that cor-
respond to the solutions of the three deterministic optimization 
problems are plotted in Fig. 4.

6.2. Optimization under uncertainties

The optimization is based on the minimization of the weighted 
sum of the mean value and standard deviation of the drag coef-
ficient subject to the probability of the lift coefficient to exceed 
a reference value CL,ref is less that a predefined probability P f ,0. 
CL,ref is set to 0.3. Parametric studies with respect to the value 
of this predefined probability P f ,0, as well as the standard devia-
tions of the uncertain parameters are conducted. The mean value 
and standard deviation of the objective function are computed us-
ing the sparse grid approach in terms of the drag coefficient per-
formance values at the nodes of the sparse grid. The constraint 
value is computed using the reliability-based analysis, based on 
the FORM approach.

The derivatives of the mean value and standard deviation of the 
drag coefficient with respect to the design parameters are plotted 
in Fig. 5 for the initial airfoil shape. The derivatives of the proba-
bility the lift coefficient exceeds the reference lift coefficient value, 
with respect to the design parameters are plotted in Fig. 6 for the 
initial airfoil shape.

Four different design cases are first compared:

1. Deterministic drag coefficient performance with deterministic 
lift coefficient constraint (DeDe): The objective function is the 
drag coefficient computed for the mean values of the flow con-
ditions and with no geometric uncertainties. The inequality 
constraint function is the difference of the lift coefficient com-
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Fig. 5. Derivatives of the mean value and standard deviation of the drag coefficient 
for the initial airfoil with respect to the geometrical design parameters.

Fig. 6. Derivatives of the probability of the lift to be less than a reference lift value, 
for the initial airfoil with respect to the geometrical design parameters.

puted for the mean values of the uncertain parameters from 
the lift coefficient reference value CL,ref .

2. Robust drag coefficient performance with deterministic lift co-
efficient constraint (RoDe): The objective is the weighted sum 
of the mean value and standard deviation of the drag coef-
ficient computed through the sparse grid quadrature. The in-
equality constraint is the same as in the DeDe design case.

3. Deterministic drag coefficient performance with lift coefficient 
reliability constraint (DeRe): The objective is the same as in 
the DeDe design case. The inequality constraint is the differ-
ence of the probability the lift coefficient to be less than a lift 
coefficient reference value CL,ref from a predefined probability 
value P f ,0.

4. Robust drag coefficient performance with lift coefficient relia-
bility constraint (RoRe): The objective is same as in the RoDe 
robust design case and the constraint is the same as in the 
DeRe reliability constraint design case.

Comparisons are made in terms of:

• The drag coefficient C D(μc) for the mean values of the uncer-
tain parameters,

• the mean value μC D of the drag coefficient,
• the standard deviation σC D of the drag coefficient and
• the probability of the lift to be less than the reference lift 

value CL,ref .

The comparison is summarized in Table 1 and the optimal air-
foils are shown in Fig. 7. As expected, the lower value for C D(μc) is 
obtained in the DeDe design case where uncertainties are ignored. 
The large σC D = 0.001579 value obtained in relation to the design 
cases RoDe and RoRe indicates that the DeDe design case is very 
sensitive to uncertainties for the specific mean values and stan-
dard deviations considered for the Mach value and angle of attack. 
The value of σC D = 0.000044 is one order less than the DeDe de-
Table 1
Comparison of the objective function value, mean value, standard deviation and 
probability of failure for the DeDe, RoDe, DeRe and RoDe designs.

Design cases C D (μc) μC D σC D P f

DeDe 0.00219 0.00422 0.00457 0.50
RoDe 0.00274 0.00318 0.00124 0.48
DeRe 0.00305 0.00550 0.00572 0.01
RoRe 0.00378 0.00479 0.00256 0.01

Fig. 7. Optimal airfoil shape obtained by DeDe, RoDe, DeRe and RoRe design cases.

sign case, indicating that the RoDe design case is significantly less 
sensitive to uncertainties. In the DeRe design case of lift coefficient 
reliability constraint, the probability of unacceptable performance 
for the lift coefficient attains its bound P f ,0 but, due to higher 
values for μC D and σC D than the RoDe and DeDe cases, the opti-
mal design is substantially less robust, with the drag coefficient to 
be most sensitive to variations in the uncertain parameters. In the 
RoRe design case of robust drag and lift coefficient reliability con-
straint, the lift coefficient constraints are satisfied with the bound 
probability P f ,0 as in the DeRe design case, but with mean μC D

and the standard deviation σC D values of the drag coefficient that 
are smaller than the optimal designs in the DeDe and the DeRe 
cases. The RoRe design case corresponds to drag coefficient values 
that are most robust to uncertainties, satisfying the reliability con-
straints for the lift.

Fig. 7 indicates that the optimal shapes depend on the design 
cases considered. Uncertainties in the drag and lift coefficients af-
fect the resulting optimal shapes. Thus, it is important for the 
designer to be aware of the uncertainties of the parameters as well 
as the objectives and constraints that really matter for the design. 
The convergence rates of the mean value, standard deviation and 
probability of failure constraint for the RoRe case are shown in 
Fig. 8. Full convergence is obtained within about 100 optimization 
cycles. Similar rates have been observed for the rest of the cases.

The optimal shapes for the RoRe design case and for differ-
ent values of the probabilistic constraint (P f ,0 = 0.1, 0.01, 0.005) 
are plotted in Fig. 9 while in Table 2, the optimal values for the 
drag coefficient nominal value, mean value and standard deviation 
are shown. It can be seen that only the pressure side contours 
of the optimal airfoil shapes depend on the reliability level P f ,0. 
Also, there is a trade-off between mean drag reduction μC D , along 
with the drag sensitivity to uncertainty σC D , and the probability 
of failure for the lift condition. Imposing strict conditions on the 
lift coefficient constraint to be satisfied with very high reliability 
or very small probability of unacceptable performance, consider-
ably affects the drag coefficient by increasing its mean value and 
its sensitivity to uncertainty.

The individual contribution of the two types of uncertainties, 
i.e. the uncertainties in the flow conditions and the geometrical 
uncertainties is also investigated for the RoRe design case. The op-
timal airfoil shape obtained by considering uncertainties (a) only 
in the Mach number and the angle of attack and (b) in Mach 
number, angle of attack and geometrical parameters, are compared 
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Fig. 8. Convergence rates of mean value, standard deviation and probability of failure 
constraint for the RoRe case.

Fig. 9. Optimal airfoil shape obtained by the RoRe design case for different values of 
the probability P f ,0 for w = 0.5.

Table 2
Comparison of the nominal value, mean value and standard deviation of the drag 
coefficient for different values of the probability of failure in the RoRe design case.

C D (μc) μC D σC D P f

P f0 = 0.005 0.00457 0.00577 0.00312 0.005
P f0 = 0.01 0.00378 0.00479 0.00256 0.01
P f0 = 0.1 0.00331 0.00408 0.00191 0.1

with each other in Fig. 10 and the corresponding values of mean 
value and standard deviation of the drag coefficient and probabil-
ity of failure for the lift are included in Table 3. It can be deduced 
that the inclusion of only flow related uncertainties has the major 
effect on the optimal airfoil shape. The inclusion of the geometri-
cal uncertainties slightly affects, in this case, the trailing edge of 
the airfoil.

7. Conclusions

A framework for aerodynamic shape optimization under uncer-
tainty was presented. The optimal design minimizes a measure 
of the drag coefficient that is robust to uncertainties, subject to 
the lift coefficient reliability constraint. The multi-dimensional in-
Fig. 10. Optimal airfoil shape obtained for the RoRe design cases for either flow-
related uncertainties or both types of uncertainties.

Table 3
Comparison of the objective function value, mean value, standard deviation and 
probability of failure for the RoRe design cases taking into account either flow-
related uncertainties only or both types of uncertainties.

C D (μc) μC D σC D P f

flow 0.00369 0.00505 0.00333 0.01
flow & geometry 0.00378 0.00479 0.00256 0.01

tegrals for the mean and standard deviation of the drag coefficient 
were computed by the sparse grid technique, while the reliabil-
ity was computed using FORM. The design parameters were the 
coordinates of the Bézier control points parameterizing the airfoil 
shape. The uncertain parameters were the flow conditions (Mach 
number and angle of attack) and the coordinates of the Bézier con-
trol points (design variables), accounting through the airfoil con-
tour parameterization for the geometric variabilities of the airfoil. 
The sensitivities of the robust measure of the drag coefficient and 
the lift reliability constraint with respect to the design variables 
and uncertain parameters were computed by the discrete adjoint 
approach to the Euler equations, substantially reducing the number 
of flow solutions to the solution on the forward and the adjoint 
equations, thus making the computational effort independent of
the number of design variables and uncertain parameters. In par-
allel implementation of the proposed optimal shape optimization 
algorithm, the time-to-solution, which depends on the solution of 
the forward and adjoint flow equations, scales with the number of 
iterations required to estimate the FORM “design” point in the un-
certain parameter space and it is independent of the number of 
sparse grid points.

Applications demonstrated that the proposed approach provides 
optimal airfoil shape that are least sensitive to uncertainties, meet-
ing at the same time the pre-imposed lift reliability constraints. 
Parametric studies have shown the important influence of the 
magnitude of uncertainties and the probability of failure threshold 
values. Each type of uncertainty (flow-related and geometrical) af-
fects differently the optimal airfoil shape and the performance. The 
studies demonstrate the importance of considering uncertainties 
in the design so that the optimal airfoil shape maintains its func-
tionality over the whole range of variation of the uncertain model 
parameters. It provides a new perspective for meeting the lift co-
efficient constraints in a probabilistic manner, guarantying that the 
design goals are met within a user-defined probability. A trade-off 
between mean drag over the uncertain domain and drag sensitiv-
ity to uncertainties was demonstrated. A trade-off between robust 
drag and lift reliability was also observed. The smaller the prob-
ability of unacceptable performance, the less effective the perfor-
mance on the robust drag coefficient, increasing the drag value in 
order to meet the lift probability constraints.

Finally, FORM techniques provide an approximation to the 
multi-dimensional lift reliability integral. In addition, implemen-
tation difficulties are also expected when multiple “design” points 
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are manifested that complicate the use of FORM due to difficulties 
in identifying the number and location of the multiple “design” 
points in the uncertain parameter space. These deficiencies in 
FORM can be overcome and considerably improve accuracy by em-
ploying advanced sampling techniques [49,29,18,3] to estimate the 
lift reliability integrals in the expense of higher computational ef-
fort, but the implementation of these techniques is beyond the 
scope of this paper.
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