ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
In a dynamic flexible manufacturing system (FMS) environment jobs arrive randomly, and in most of the existing studies the due date for a single part is set individually. However, when the due date is set for an order that consists of multiple parts, some completed parts may have to wait for the rest of the order to be completed. This paper studied the scheduling problem in the FMS in which orders require the completion of different parts in various quantities. The orders arrive randomly and continuously, and all have predetermined due dates. Two scheduling decisions were considered in this study: launching parts into the system for production, and determining the order sequence for collecting the completed parts. A new part-launching rule, named the Tardiness Estimating Method (TEM) was proposed. A discrete-event simulation model of the FMS was developed and used as a test-bed for experiments under various system conditions. The proposed part launch rule was capable of providing good performance regarding minimum mean tardiness and maximum service level, but provided only a moderate flow time when compared with the other five rules commonly used in the literature. In addition, three order collection rules were tested in the experiments. Collecting parts for the order with the earliest due date (EDD) was found better than the other rules for tardiness related measures.