دانلود رایگان مقاله انگلیسی یک روش آماری جدید برای سیستم های تشخیص نفوذ - الزویر 2018

عنوان فارسی
یک روش آماری جدید برای سیستم های تشخیص نفوذ
عنوان انگلیسی
A novel statistical technique for intrusion detection systems
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
43
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
نوع نگارش
مقالات پژوهشی (تحقیقاتی)
رفرنس
دارد
پایگاه
اسکوپوس
کد محصول
E10161
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
امنیت اطلاعات، سامانه های شبکه ای
مجله
نسل آینده سیستم های کامپیوتری - Future Generation Computer Systems
دانشگاه
School of Agricultural Computational and Environmental Sciences - University of Southern Queensland - Australia
کلمات کلیدی
نمونه برداری، سیستم تشخیص نفوذ (IDS)، امنیت شبکه، ماشین بردار پشتیبانی حداقل مربعات (LS-SVM)
doi یا شناسه دیجیتال
http://dx.doi.org/10.1016/j.future.2017.01.029
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


This paper proposes a novel approach for intrusion detection system based on sampling with Least Square Support Vector Machine (LS-SVM). Decision making is performed in two stages. In the first stage, the whole dataset is divided into some predetermined arbitrary subgroups. The proposed algorithm selects representative samples from these subgroups such that the samples reflect the entire dataset. An optimum allocation scheme is developed based on the variability of the observations within the subgroups. In the second stage, least square support vector machine (LS-SVM) is applied to the extracted samples to detect intrusions. We call the proposed algorithm as optimum allocation-based least square support vector machine (OALS-SVM) for IDS. To demonstrate the effectiveness of the proposed method, the experiments are carried out on KDD 99 database which is considered a de facto benchmark for evaluating the performance of intrusions detection algorithm. All binary-classes and multiclass are tested and our proposed approach obtains a realistic performance in terms of accuracy and efficiency. Finally a way out is also shown the usability of the proposed algorithm for incremental datasets.

نتیجه گیری

Conclusion


Accurate detection of various types of attack in IDS is a complicated problem, requiring the analysis of large sets of IDS data. Representative samples from a large data set play an important role to detect intrusions in the field of network security. However the current solutions for detecting intrusions is only for static datasets. This paper proposes an IDS that can be used both for static and incremental data. The proposed IDS uses the idea of sampling and we refer to this as the optimum allocation based least square support vector machine (OA-LS-SVM). The proposed methodology is discussed and validated through KDD 99 dataset which is considered as a benchmark for testing any IDS approach. The experimental results show that the proposed method is every effective for detecting intrusions for static (i.e., the entire dataset is assumed to be available at the time of release) as well as for incremental datasets.


بدون دیدگاه