منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی تشخیص نفوذ در شبکه های کامپیوتری با استفاده از الگوریتم یادگیری Lazy - الزویر 2018

عنوان فارسی
تشخیص نفوذ در شبکه های کامپیوتری با استفاده از الگوریتم یادگیری Lazy
عنوان انگلیسی
Intrusion Detection in Computer Networks using Lazy Learning Algorithm
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
9
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
نوع نگارش
مقالات پژوهشی (تحقیقاتی)
رفرنس
دارد
پایگاه
اسکوپوس
کد محصول
E10099
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
هوش مصنوعی، شبکه های کامپیوتری
مجله
مجله علوم کامپیوتر پروسیدیا - Procedia Computer Science
دانشگاه
School of Computer Science and Engineering - VIT - Vellore - India
کلمات کلیدی
یادگیری Lazy؛ سیستم تشخیص نفوذ؛ یادگیری ماشین؛ IBK؛ kNN
doi یا شناسه دیجیتال
https://doi.org/10.1016/j.procs.2018.05.108
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Intrusion Detection Systems (IDS) are used in computer networks to safeguard the integrity and confidentiality of sensitive data. In recent years, network traffic has become sizeable enough to be considered under the big data domain. Current machine learning based techniques used in IDS are largely defined on eager learning paradigms which lose performance efficiency by trying to generalize training data before receiving queries thereby incurring overheads for trivial computations. This paper, proposes the use of lazy learning methodologies to improve overall performance of IDS. A novel heuristic weight based indexing technique has been used to overcome the drawback of high search complexity inherent in lazy learning. IBk and LWL, two popular lazy learning algorithms have been compared and applied on the NSL-KDD dataset for simulating a real-world like scenario and comparing their relative performances with hw-IBk. The results of this paper clearly indicate lazy algorithms as a viable solution for real-world network intrusion detection.

نتیجه گیری

Conclusion


This paper elucidates the advantages of lazy learning in IDS. Lazy learning improves the efficiency of the NIDS by eliminating pre-fetching of overheads that are inherent in eager learning algorithms popularly in use today. Further an improvement of the k-nearest neighbour algorithm has been proposed to reduce the search complexity using a heuristic weight based indexing system. The results of this sufficiently prove thehw-IBk algorithm is a practical and viable solution for intrusion detection in data streams, with great accuracy,more so than other machine learning algorithms currently deployed. Additionally, the IBk algorithm has been compared to another other lazy learning algorithmLWL in order to compareand contrast their performances on the NSL-KDD network traffic dataset.The time taken to detect intrusions is significantly reduced and it is observed that the number of correctly classified instances of intrusions is relatively higher (~97.59).Thus, with significant increase in the speed of computation, network intrusions can now be detected faster without any loss to accuracy and thus aid in threat identification in real-time network system.


بدون دیدگاه