دانلود رایگان مقاله انگلیسی زمانبندی کار انرژی موثر در محیط ابر - الزویر 2017

عنوان فارسی
زمانبندی کار انرژی موثر در محیط ابر
عنوان انگلیسی
Energy Efficient Task Scheduling in Cloud Environment
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
6
سال انتشار
2017
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E6084
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
رایانش ابری
مجله
پروسه انرژی - Energy Procedia
دانشگاه
Institute of Management Technology - Nagpur - India
کلمات کلیدی
برنامه زمانبندی کار، محاسبات ابر ، CloudSim، الگوریتم انتخاب کلون
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Cloud computing is a style of computing in which dynamically scalable and other virtualized resources are provided as a service over the Internet. The energy consumption and makespan associated with the resources allocated should be taken into account. This paper focuses on task scheduling using Clonal Selection Algorithm (TSCSA) to optimize energy and processing time. The result obtained by TSCSA was simulated by an open source cloud platform (CloudSim). Finally, the results were compared to existing scheduling algorithms and found that the proposed algorithm (TSCSA) provide an optimal balance results for multiple objectives.

نتیجه گیری

7. Conclusion


This paper presented multi-objective CSA based optimization algorithm which can solve the task scheduling problem under the computing environment, where of the number of data center and user job changes dynamically. But, in changing environment, cloud computing resources needs to be operated in optimally manner. Therefore, multi-objective CSA based algorithm is suitable for cloud computing environment because the algorithm is able to effectively utilize the system resources to reduce energy and makespan. The experimental results illustrated that the proposed methods (TSCSA) out-performed the maximum applications scheduling algorithm and random scheduling For further studies, the optimization model should add more essential objectives ( bandwidth, load balancing, cost etc) and should focus more robust algorithm.


بدون دیدگاه