دانلود رایگان مقاله انگلیسی کشف الگوی ساختاری فازی برای تحلیل گراف - نشریه IEEE

عنوان فارسی
کشف الگوی ساختاری فازی برای تحلیل گراف
عنوان انگلیسی
Discovering Fuzzy Structural Patterns for Graph Analytics
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
12
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
رفرنس
دارد
کد محصول
E5656
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
هوش مصنوعی، مهندسی الگوریتم ها و محاسبات
مجله
یافته ها در زمینه سیستم های فازی - Transactions on Fuzzy Systems
دانشگاه
The Hong Kong Polytechnic University - Kowloon Hong Kong
کلمات کلیدی
خوشه بندی فازی، الگوی ساختاری فازی، خوشه بندی نمودار فازی، رابطه ای C-means خوشه ای فازی، شبکه اجتماعی، شبکه های بیولوژیکی، شبکه های پیچیده، تجزیه و تحلیل گراف
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Many real-world data can be represented as attributed graphs that contain vertices each of which is associated with a set of attribute values. Discovering clusters, or communities, which are structural patterns in these graphs is one of the most important tasks in graph analysis. To perform the task, a number of algorithms have been proposed. Some of them detect clusters of particular topological properties whereas some others discover them based mainly on attribute information. Also, most algorithms discover disjoint clusters only. As a result, they may not be able to detect more meaningful clusters hidden in the attributed graph. To do so more effectively, we propose an algorithm, called FSPGA, to discover fuzzy structural patterns for graph analytics. FSPGA performs the task of clusters discovery as a fuzzy constrained optimization problem which takes into consideration both graph topology and attribute values. FSPGA has been tested with both synthetic and real-world graph data sets and is found to be efficient and effective at detecting clusters in attributed graphs. FSPGA is a promising fuzzy algorithm for structural pattern detection in attributed graphs.

نتیجه گیری

V. CONCLUSION


In this paper, FSPGA, which is an algorithm for discovering fuzzy structural patterns in the form of clusters in the attributed graph, is proposed. Compared with prevalent algorithms that take different properties of an attributed graph, including topology, attribute, and both of the aforementioned, FSPGA may find an optimal arrangement of clusters for vertices in an attributed graph by formulating the task as a fuzzy constrained optimization problem. As the adoption of fuzzy set theory when determining the cluster membership, FSPGA can detect overlapping clusters, while most of the prevalent algorithms cannot. The experimental results presented in this paper show that FSPGA may perform robustly and efficiently in different types graph data, compared with the classical, latest graph clustering algorithms, and fuzzy clustering algorithms. In future, we will intend to further improve the efficiency of FSPGA and develop a version of FSPGA that may discover hierarchical structural patterns in attributed graphs.


بدون دیدگاه