دانلود رایگان مقاله انگلیسی رویکرد شبکه عصبی پیچشی برای پیش بینی مکان پلی آدنیله سازی - IEEE 2018

عنوان فارسی
رویکرد شبکه عصبی پیچشی برای پیش بینی مکان پلی آدنیله سازی
عنوان انگلیسی
DeepPolyA: a convolutional neural network approach for polyadenylation site prediction
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
10
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
پایگاه
اسکوپوس
کد محصول
E10381
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
الگوریتم ها و محاسبات، هوش مصنوعی، شبکه های کامپیوتری
مجله
IEEE Access
دانشگاه
Department of Computer Science - New Jersey Institute of Technology - Newark - USA
کلمات کلیدی
پیش بینی پلی آدنیله سازی، یادگیری عمیق، شبکه عصبی چند لایه، کشف موتیف، ژنومیک و الگوریتم های یادگیری ماشین
doi یا شناسه دیجیتال
https://doi.org/10.1109/ACCESS.2018.2825996
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

ABSTRACT


Polyadenylation (Poly(A)) plays crucial roles in gene regulation, especially in messenger RNA metabolism, protein diversification and protein localization. Accurate prediction of polyadenylation sites and identification of motifs that controlling polyadenylation are fundamental for interpreting the patterns of gene expression, improving the accuracy of genome annotation and comprehending the mechanisms that governing gene regulation. Despite considerable advances in using machine learning techniques for this problem, its efficiency is still limited by the lack of experiences and domain knowledge to carefully design and generate useful features, especially for plants. With the increasing availability of extensive genomic datasets and leading computational techniques, deep learning methods, especially convolutional neural networks, have been applied to automatically identify and understand gene regulation directly from gene sequences and predict unknown sequence profiles. Here, we present DeepPolyA, a new deep convolutional neural network-based approach, to predict polyadenylation sites from the plant Arabidopsis thaliana gene sequences. We investigate various deep neural network architectures and evaluate their performance against classical machine learning algorithms and several popular deep learning models. Experimental results demonstrate that DeepPolyA is substantially better than competing methods regarding various performance metrics. We further visualize the learned motifs of DeepPolyA to provide insights of our model and learned polyadenylation signals.

نتیجه گیری

CONCLUSION AND FUTURE WORKS


In this paper, we proposed DeepPolyA, a deep convolutional neural network approach, to automatically and accurately modeling the poly(A) signals. Using the plant Arabidopsis thaliana gene sequences datasets with one-hot encoding method, we trained several competing deep learning models with various architectures and compared the classification performance with baseline machine learning methods through several significant metrics. The evaluation results show that DeepPolyA outperforms all the competing methods without involving extensive manual feature engineering. We visualized the learned motifs of the first convolutional layer using TOMTOM against the JASPAR motif datasets to demonstrate that DeepPolyA can automatically extract poly(A) signals and features from the raw sequence data.


بدون دیدگاه